0000000000247039

AUTHOR

Dario Voinovich

showing 2 related works from this author

Protective and regenerative effects of a novel medical device against esophageal mucosal damage using in vitro and ex vivo models.

2020

Gastroesophageal reflux disease (GERD) is a common digestive disorder that causes esophagitis and injuries to the esophageal mucosa. GERD symptoms are recurrent during pregnancy and their treatment is focused on lifestyle changes and nonprescription medicines. The aim of this study was to characterize the mechanism of action of a new patented medical device, an oral formulation containing hyaluronic acid, rice extract, and amino acids dispersed in a bioadhesive polymer matrix, by assessing its protective effects in in vitro and ex vivo models of esophageal mucosa damage. Acidic bile salts and pepsin cocktail (BSC) added to CP-A and COLO-680 N esophagus cells were used as an in vitro GERD mo…

0301 basic medicineEsophageal MucosaHyaluronic acidRM1-950PharmacologyPermeability03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePepsinCell Line TumorDigestive disorderHyaluronic acidMedicineHumansRegenerationEsophagusAmino AcidsHyaluronic AcidEvans BlueMedical devicePharmacologybiologybusiness.industryBioadhesive polymer; Gastroesophageal reflux disease (GERD); Hyaluronic acid; Medical device; Rice extractPlant ExtractsRice extractAdhesivenessOryzaGeneral MedicineBioadhesive polymermedicine.diseaseGastroesophageal reflux disease (GERD)digestive system diseases030104 developmental biologymedicine.anatomical_structurechemistryEquipment and Supplies030220 oncology & carcinogenesisbiology.proteinGERDGastroesophageal RefluxTherapeutics. PharmacologybusinessWound healingEx vivoBiomedicinepharmacotherapy = Biomedecinepharmacotherapie
researchProduct

Antibacterial drug release from a biphasic gel system: Mathematical modelling

2019

Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (…

DrugMaterials sciencemedia_common.quotation_subjectVancomycin HydrochloridePharmaceutical SciencePoloxamer02 engineering and technologyantibacterial drugengineering.material030226 pharmacology & pharmacyDiffusion03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineMicro-particleCoatingVancomycinAntibacterial drugmedicineAntibacterial drugmedia_commonGelMathematical modellingReproducibility of ResultsMicro-particlesModels Theoretical021001 nanoscience & nanotechnologyAnti-Bacterial AgentsDrug LiberationKineticsPLGAchemistrySettore CHIM/09 - Farmaceutico Tecnologico Applicativoantibacterial drug; Gels; Mathematical modelling; Micro-particles; Orthopaedic implantsPoloxamer 407engineeringOrthopaedic implantsDelivery systemImplant0210 nano-technologyGelsmedicine.drugBiomedical engineeringInternational Journal of Pharmaceutics
researchProduct