0000000000248020
AUTHOR
Dario Frascari
Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds
Rhodococcus sp. strain BCP1 (DSM 44980) co-metabolizes chlorinated compounds and mineralizes a broad range of alkanes being highly tolerant to these toxic chemicals. Here, we present the high-quality draft genome sequence of strain BCP1 consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNAs genes. Rhodococcus genus comprises Gram-positive, non-sporulating, aerobic bacteria that are widely distributed in the environment (1). Rhodococcus sp. strain BCP1 (formerly: Rhodococcus aetherovorans strain BCP1, DSM 44980) was selected from an aerobic butane-utilizing consortium as the prevailing isolate able to co-metabolize chloroform, vinyl chloride and tric…
Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: New metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes
none 7 si Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 g…