0000000000248190

AUTHOR

Alvaro Seijas-da Silva

0000-0001-7139-7269

Boosting the supercapacitive behavior of CoAl-layered double hydroxides via tuning the metal composition and interlayer space

Layered double hydroxides (LDHs) are promising supercapacitor materials due to their wide chemical versatility, earth abundant metals and high specific capacitances. Many parameters influencing the supercapacitive performance have been studied such as the chemical composition, the synthetic approaches, and the interlayer anion. However, no systematic studies about the effect of the basal space have been carried out. Here, two-dimensional (2D) CoAl-LDHs were synthesized through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 7.5 to 32.0 Å). These compounds exhibit similar size and dimensions but different basal space to explore excl…

research product

Cover Feature: Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides (Chem. Eur. J. 29/2020)

research product

Two-dimensional magnetic behaviour in hybrid NiFe-layered double hydroxides by molecular engineering

Layered double hydroxides (LDHs) are a class of two-dimensional (2D) anionic materials that exhibit remarkable chemical versatility, making them ideal building blocks in the design of complex multifunctional materials. In this line, a NiFe-LDH is probably one of the most important LDHs due to its interesting electrochemical and magnetic properties. However, no direct magnetic measurements of exfoliated NiFe-LDH nanosheets have been reported so far. Herein, we synthesize a hybrid NiFe-LDH family through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 8 to 31.6 Å), minimizing the interlayer dipolar interactions. By intercalation with…

research product

Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides

Layered double hydroxides (LDHs) are low dimensional materials that act as benchmark catalysts for the oxygen evolution reaction (OER). Many LDH properties affecting the OER have been studied to reach the optimal efficiency but no systematic studies concerning the influence of the interlayer space have been developed. In this context, these materials allow a large tunability in their chemical composition enabling the substitution of the interlayer anion and therefore modifying exclusively the basal space. Here, we synthesize by anion exchange reactions a surfactantintercalated family of NiFe-LDHs with increasing basal spacing ranging from 8.0 to 31.6 Å (one of the largest reported so far fo…

research product

Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides

Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, e…

research product

Influence of Fe-clustering on the water oxidation performance of two-dimensional layered double hydroxides

Among the two-dimensional (2D) materials family, layered double hydroxides (LDHs) represent a key member due to their unparalleled chemical versatility. In particular, Fe-based LDHs are distinguished candidates due to their high efficiency as oxygen evolution reaction (OER) electrocatalysts. Herein, we have selected MgFe-based LDH phases as model systems in order to decipher whether Fe-clustering exerts an effect on the OER performance. For that, we have optimized hydrothermal synthesis by using triethanolamine (TEA) as the chelating agent. The magnetic characterisation allows us to identify the Fe-clustering degree by following both magnetic susceptibility as well as magnetization values a…

research product

Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts

To date, a plethora of electrocatalysts for the Oxygen Evolution Reaction (OER) have been proposed. For evaluating their electrocatalytic behavior the determination of the onset potential in each studied electrolyte is a key parameter. Nevertheless, this evaluation becomes particularly problematic for first- transition metal catalysts as well as by the use of electroactive collectors ( e.g. Ni foams) whose redox peaks overlap the onset potential. A usual solution to detect the onset potential requires the availabil- ity of in-situ mass spectrometric determination of the generated oxygen. In this work, we present fast and easier available cyclic voltammetry and coulovoltammetric responses to…

research product

In Situ Synthesis of Conducting Polymers: A Novel Approach toward Polymer Thermoelectrics

The efficient conversion of thermal energy into electricity by means of durable and scalable solid-state thermoelectric devices has been a well stablished aim. Electrically conducting polymers have...

research product

Cover Feature: Boosting the Supercapacitive Behavior of CoAl Layered Double Hydroxides via Tuning the Metal Composition and Interlayer Space (Batteries & Supercaps 6/2020)

research product

In Situ Synthesis of Polythiophene and Silver Nanoparticles within a PMMA Matrix: A Nanocomposite Approach to Thermoelectrics

The processability of organic thermoelectric materials plays a crucial role due to their clear advantages of applicability in large-scale areas compared to traditional inorganic counterparts. A promising way to process thermoelectric materials based on conductive polymers is through in situ polymerization in an insulating polymer matrix. This work shows an interpenetrating polymeric network based on polythiophene, silver nanoparticles (Ag NPs), and poly(methyl methacrylate) (PMMA) produced by the oxidative polymerization of terthiophene by an oxidizing silver salt in a PMMA matrix. Ag NPs are in situ synthesized simultaneously as a byproduct. The reaction occurs very fast in the solid state…

research product