Contribution of MUTYH variants to male breast cancer risk: results from a multicenter study in Italy
Inherited mutations in BRCA1, and, mainly, BRCA2 genes are associated with increased risk of male breast cancer (MBC). Mutations in PALB2 and CHEK2 genes may also increase MBC risk. Overall, these genes are functionally linked to DNA repair pathways, highlighting the central role of genome maintenance in MBC genetic predisposition. MUTYH is a DNA repair gene whose biallelic germline variants cause MUTYH-associated polyposis (MAP) syndrome. Monoallelic MUTYH variants have been reported in families with both colorectal and breast cancer and there is some evidence on increased breast cancer risk in women with monoallelic variants. In this study, we aimed to investigate whether MUTYH germline v…
A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy
Abstract Introduction Breast cancer (BC) in men is a rare disease, whose etiology appears to be associated with genetic factors. Inherited mutations in BRCA1/2 genes account for about 10–15% of all cases. FANCM, functionally linked to BRCA1/2, has been suggested as a novel BC susceptibility gene. Our aim was to test if FANCM germline mutations could further explain male BC (MBC) susceptibility. Methods We screened the entire coding region of FANCM in 286 MBCs by a multi-gene panel analysis, and compared these data with available whole exome sequencing data from 415 men used as population controls. Moreover, we genotyped the two most frequent FANCM mutations (c.5101C>T and c.5791C>T) in 506 …
Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk
Breast cancer in men is a rare and still poorly characterized disease. Inherited mutations in BRCA1, BRCA2 and PALB2 genes, as well as common polymorphisms, play a role in male breast cancer genetic predisposition. Male breast cancer is considered a hormone-dependent tumor specifically related to hyperestrogenism. Polymorphisms in genes involved in estrogen biosynthesis and metabolism pathways, such as CYP17A1 and CYP1B1, have been associated with breast cancer risk. Here, we aimed to investigate the role of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk. A series of 597 male breast cancer cases and 1022 male controls, recruited within the Italian Multicenter Study on male brea…
Whole-exome sequencing and targeted gene sequencing provide insights into the role ofPALB2as a male breast cancer susceptibility gene
BACKGROUND Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation–negative MBC cases. METHODS Germ-line DNA of 1 male and 2 female BRCA1/2 mutation–negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results w…