0000000000248346

AUTHOR

Yang Cao

showing 5 related works from this author

Heterozygous HMGB1 loss-of-function variants are associated with developmental delay and microcephaly

2021

International audience; 13q12.3 microdeletion syndrome is a rare cause of syndromic intellectual disability. Identification and genetic characterization of patients with 13q12.3 microdeletion syndrome continues to expand the phenotypic spectrum associated with it. Previous studies identified four genes within the approximately 300 Kb minimal critical region including two candidate protein coding genes: KATNAL1 and HMGB1. To date, no patients carrying a sequence-level variant or a single gene deletion in HMGB1 or KATNAL1 have been described. Here we report six patients with loss-of-function variants involving HMGB1 and who had phenotypic features similar to the previously described 13q12.3 m…

Male0301 basic medicineHeterozygoteMicrocephalyAdolescentDNA Copy Number VariationsLanguage delay[SDV]Life Sciences [q-bio]KaryotypeInheritance Patternschemical and pharmacologic phenomena030105 genetics & heredityBiologydysmorphic featuresloss of function mutation03 medical and health sciencesExome SequencingIntellectual disabilityGeneticsmedicineHumansGenetic Predisposition to DiseaseHMGB1 ProteinChildGeneGenetic Association StudiesIn Situ Hybridization FluorescenceGenetics (clinical)Loss functionGeneticsHMGB1FaciesExonsdevelopmental disabilitiesMicrodeletion syndromemedicine.diseasePhenotypePhenotype030104 developmental biologyChild PreschoolMicrocephalyFemaleHaploinsufficiency
researchProduct

Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field.

2016

One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudo-magnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudo-magnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudo-magnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining grap…

STM: Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesBioengineering02 engineering and technology01 natural sciencespseudospin polarizationlaw.inventionstrainlaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)valley filterGeneral Materials ScienceSymmetry breaking010306 general physicsPhysicsLocal density of statesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGrapheneMechanical EngineeringgrapheneObservableGeneral ChemistryLandau quantization021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)Magnetic field: Physique [G04] [Physique chimie mathématiques & sciences de la terre]pseudomagnetic fieldScanning tunneling microscope0210 nano-technologyNano letters
researchProduct

Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials

2020

Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density fun…

Electron mobilityMaterials scienceElectronic properties and materialsBand gapSciencenanomateriaalitGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleNanomaterialsNanoclustersnanorakenteetpuolijohteetAtomCluster (physics)electronic properties and materialslcsh:Sciencechemistry.chemical_classificationMultidisciplinaryNanowiresQGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical sciencesnanowireschemistryNanoparticlesnanoparticlesDensity functional theorylcsh:Q0210 nano-technologyNature Communications
researchProduct

CCDC 1962411: Experimental Crystal Structure Determination

2020

Related Article: Peng Yuan, Ruihua Zhang, Elli Selenius, Pengpeng Ruan, Yangrong Yao, Yang Zhou, Sami Malola, Hannu Häkkinen, Boon K. Teo, Yang Cao, Nanfeng Zheng|2020|Nat.Commun.|11|2229|doi:10.1038/s41467-020-16062-6

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[icosakis(mu-(adamantan-1-yl)ethynyl)-heptadeca-gold-heptadeca-silver unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1962412: Experimental Crystal Structure Determination

2020

Related Article: Peng Yuan, Ruihua Zhang, Elli Selenius, Pengpeng Ruan, Yangrong Yao, Yang Zhou, Sami Malola, Hannu Häkkinen, Boon K. Teo, Yang Cao, Nanfeng Zheng|2020|Nat.Commun.|11|2229|doi:10.1038/s41467-020-16062-6

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersicosakis(mu-(adamantan-1-yl)ethynyl)-tetracosa-gold-undeca-silver unknown solvateExperimental 3D Coordinates
researchProduct