Compactness in Groups of Group-Valued Mappings
We introduce the concepts of extended equimeasurability and extended uniform quasiboundedness in groups of group-valued mappings endowed with a topology that generalizes the topology of convergence in measure. Quantitative characteristics modeled on these concepts allow us to estimate the Hausdorff measure of noncompactness in such a contest. Our results extend and encompass some generalizations of Fréchet–Šmulian and Ascoli–Arzelà compactness criteria found in the literature.