0000000000252709
AUTHOR
Youris Zalite
Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in root s=7 TeV proton-proton collisions with the ATLAS detector
Results are presented of a search for supersymmetric particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e or mu) of opposite charge in sqrt{s}=7 TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample corres…
Measurement of theZZProduction Cross Section and Limits on Anomalous Neutral Triple Gauge Couplings in Proton-Proton Collisions ats=7 TeVwith the ATLAS Detector
A measurement of the ZZ production cross section in proton-proton collisions at root s = 7 TeV using data corresponding to an integrated luminosity of 1.02 fb(-1) recorded by the ATLAS experiment a ...
Inclusive search for same-sign dilepton signatures in pp collisions at $ sqrt {s} = 7 $ TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predic…