0000000000253366

AUTHOR

Déborah Closset-kopp

showing 2 related works from this author

Light availability and land‐use history drive biodiversity and functional changes in forest herb layer communities

2020

International audience; A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land-use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variabi…

0106 biological sciencesEnvironmental change[SDV]Life Sciences [q-bio]LEAF-AREADIVERSITYBiodiversitybiodiversity measuresClimate changeINDICATOR VALUESPlant Science010603 evolutionary biology01 natural sciencesforest canopy featuresBosecologie en BosbeheerPLANT-COMMUNITIES/dk/atira/pure/core/keywords/biologyEcology Evolution Behavior and Systematics2. Zero hungerForest floorLIMITATIONatmospheric depositionsEcologyEcologySPECIES RICHNESSresurveyBiology and Life SciencesTemperate forestGlobal changepost-agricultural forests15. Life on landPE&RCForest Ecology and Forest ManagementNITROGENclimate changeTEMPERATE FORESTEcosystems Research13. Climate actionEarth and Environmental SciencesEnvironmental scienceSpecies evennessVEGETATIONSpecies richnessRESPONSESfunctional signature010606 plant biology & botanyJournal of Ecology
researchProduct

Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural…

2020

Questions: Light availability at the forest floor affects many forest ecosystem processes, and is often quantified indirectly through easy-to-measure stand characteristics. We investigated how three such characteristics, basal area, canopy cover and canopy closure, were related to each other in structurally complex mixed forests. We also asked how well they can predict the light-demand signature of the forest understorey (estimated as the mean Ellenberg indicator value for light [“EIVLIGHT”] and the proportion of “forest specialists” [“%FS”] within the plots). Furthermore, we asked whether accounting for the shade-casting ability of individual canopy species could improve predictions of EIV…

0106 biological sciencesCanopy[SDV]Life Sciences [q-bio]DIVERSITYAtmospheric sciences01 natural sciencescanopy closureshade-casting abilityBasal areaSOLAR-RADIATION TRANSMITTANCEherb layerlight availabilityEnvironmental planningEcologyPolicy and LawTemperate forestForestryVegetationUnderstoryPE&RCCOMMUNITYbasal areaEcosystems Researchlight transmittanceLife Sciences & BiomedicineTemperate rainforestMonitoringEnvironmental Sciences & EcologyManagement Monitoring Policy and Law010603 evolutionary biologyEcology and EnvironmentEllenberg indicator valuesunderstoreyForest ecologyGAP FORMATIONMANAGEMENTBosecologie en Bosbeheer/dk/atira/pure/core/keywords/biologyNature and Landscape ConservationForest floorScience & Technology/dk/atira/pure/core/keywords/557265479Plant SciencesSEEDLING SURVIVAL15. Life on landCOVERForest Ecology and Forest ManagementLAYEREarth and Environmental Sciencestemperate forestcanopy coverEnvironmental scienceVEGETATION010606 plant biology & botanyRESPONSESApplied Vegetation Science
researchProduct