0000000000253542

AUTHOR

F. Priolo

showing 3 related works from this author

Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and er-doped nanoclusters

2006

In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light-emitting devices based on silicon nanostructures. The performances of crystalline, amorphous, and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanoclusters are more conductive than the crystalline counterpart. In contrast, nonradiative processes seem to be more efficient for amorphous clusters resulting in a lower quantum efficiency. Erbium doping results in the presence of an intense EL at 1.54 μm with a concomit…

Materials scienceSiliconElectroluminescent devicechemistry.chemical_elementNanocrystalQUANTUM DOTSElectroluminescenceSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaNanoclustersErbiumIntegrated optoelectronicElectroluminescence (EL)Light-emitting deviceOptical interconnectionElectrical and Electronic Engineeringbusiness.industryDopingOPTICAL-PROPERTIESAtomic and Molecular Physics and OpticsAmorphous solid1.54 MU-MchemistryNanocrystalOptoelectronicsQuantum efficiencySI NANOCRYSTALSENERGY-TRANSFERbusinessErbium
researchProduct

Light absorption and electrical transport in Si:O alloys for photovoltaics

2010

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was …

Materials scienceAbsorption spectroscopyFour-pointAnalytical chemistryGeneral Physics and AstronomyAbsorption coefficientChemical vapor depositionBoron implantationSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiasymbols.namesakeElectrical resistivity and conductivityPlasma-enhanced chemical vapor depositionThin filmAbsorption (electromagnetic radiation)Electrical sheet resistanceSi contentSEMIINSULATING POLYCRYSTALLINE SILICON; SOLAR-CELLS; 3RD-GENERATION PHOTOVOLTAICS; OPTICAL-PROPERTIES; AMORPHOUS-SILICON; THIN-FILMS; CRYSTALLINEOptical absorptionProbe methodElectrical resistivityAlloy depositionSputter depositionElectrical transportsymbolsOxygen-rich siliconRaman spectroscopyOptical gapReflectance spectrumPhotovoltaic
researchProduct

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) st…

PhotovoltaicsMaterials Science(all)Mechanics of MaterialsMechanical EngineeringNanoparticlesPlasmonic-enhanced light trappingSubwavelength nanostructuresSelf-assemblySDG 7 - Affordable and Clean EnergyLocalized surface plasmon resonanceThin film solar cellsCondensed Matter Physics
researchProduct