0000000000255831

AUTHOR

S. Siem

Shape coexistence in the neutron-deficient even-even Hg182-188 isotopes studied via Coulomb excitation

Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interp…

research product

Structure of low-lying states in 140Sm studied by Coulomb excitation

The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 2+ 1 state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and alge…

research product

Entry distribution of 220Th: A method to determine the fission barrier of an unstable nucleus

research product

Shape Coexistence in the Neutron-Deficient Even-EvenHg182−188Isotopes Studied via Coulomb Excitation

Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0(+) states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0(+) state was noted in Hg-182; 184. The results are compared to beyond mean field and interacting-boson based models and i…

research product

Neutron-skin thickness of 208Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

The $^{208}$Pb($p$,$n\gamma\bar p$) $^{207}$Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its $\gamma$-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness ($\Delta R_{pn}$). By comparing the theoretical results with the measured transition energy, the value of 0.190 $\pm$ 0.028 fm has been determined for $\Delta R_{pn}$ of $^{208}$Pb, in agreement with previous experiment…

research product

Structure of the Odd-A, Shell-Stabilized NucleusNo102253

In-beam {gamma}-ray spectroscopic measurements have been made on {sub 102}{sup 253}No. A single rotational band was identified up to a probable spin of 39/2({Dirac_h}/2{pi}), which is assigned to the 7/2{sup +}[624] Nilsson configuration. The bandhead energy and the moment of inertia provide discriminating tests of contemporary models of the heaviest nuclei. Novel methods were required to interpret the sparse data set associated with cross sections of around 50 nb. These methods included comparisons of experimental and simulated spectra, as well as testing for evidence of a rotational band in the {gamma}{gamma} matrix.

research product

Experimental observation of the M1 scissors mode in $^{254}No$

Physics letters / B 834, 137479 (2022). doi:10.1016/j.physletb.2022.137479

research product