0000000000260995
AUTHOR
M.j.g. Borge
Shapes of the $^{192,190}$Pb ground states from beta decay studies using the total absorption technique
The beta decay of $^{192,190}$Pb has been studied using the total absorption technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the $^{192,190}$Pb isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects. The β decay of Pb192,190 has been studied using the total absorption technique at the ISOLDE (CERN) facility. The β-decay strength deduced from the measurements, combined …
New β-decaying state in 214Bi
A new β-decaying state in 214Bi has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred Iπ = (8−) assignment was suggested for this state based on the β-decay feeding pattern to levels in 214Po and shell-model calculations. The half-life of the Iπ = (8−) state was deduced to be T1/2 = 9.39(10) min. The deexcitation of the levels populated in 214Po by the β decay of this state was investigated via γ -γ coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in 214Bi and 214Po were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both ca…
Evolution of deformation in neutron-rich Ba isotopes up to A=150
12 pags., 11 figs., 3 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Relative proton and γ widths of astrophysically important states in 30S studied in the β-delayed decay of 31Ar
Resonances just above the proton threshold in 30S affect the 29P(p,gamma)30S reaction under astrophysical conditions. The (p,gamma)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and gamma partial widths of resonances in 30S. The widths are determined from the beta-2p and beta-p-gamma decay of 31Ar, which is produced at the ISOLDE facility at the European research organization CERN. Experimental limits on the ratio between the proton and gamma partial widths for astrophysical relevant levels in 30S have been found for the first time. A level at 4688(5) keV is identif…
Multiparticle emission in the decay of Ar 31
A multihit capacity setup was used to study the decay of the dripline nucleus 31Ar, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the β-delayed three-proton decay of 31Ar is presented for the first time together with a quantitative analysis of the β-delayed 2pγ decay. A new method for determination of the spin of low-lying levels in the βp daughter 30S using proton-proton angular correlations is presented and used to determine that the spin of the 5.2-MeV level is most likely 3+ with 4+ also possible. The half-life of 31Ar is found to be 15.1(3) ms. An improved analysis of the Fermi β strength including the β3p-decay mode gives a total measured branching ratio of 3.60…
An innovative Superconducting Recoil Separator for HIE-ISOLDE
International audience; The ISOLDE Scientific Infrastructure at CERN offers a unique range of post-accelerated radioactive beams. The scientific program can be improved with the “Isolde Superconducting Recoil Separator” (ISRS), an innovative spectrometer able to deliver unprecedented (A, Z) resolution. In this paper we present an overview of the physics and ongoing technical developments.
Proton dripline studies at ISOLDE: 31Ar and 9C
In this contribution examples of the application of new technologies to disentangle the mechanism of beta-delayed multiparticle emission are given. In particular the mechanism of β-delayed two-proton emission from 31Ar has be resolved and proved to be sequential, a preview of 9C-decay data is discussed. peerReviewed
First β-decay spectroscopy of $^{135}$In and new $β$-decay branches of $^{134}$In
International audience; The $\beta$ decay of the neutron-rich $^{134}$In and $^{135}$In was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number $Z=50$ above the $N=82$ shell. The $\beta$-delayed $\gamma$-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three $\beta$-decay branches of $^{134}$In were established, two of which were observed for the first time. Population of neutron-unbound states decaying via $\gamma$ rays was identified in the two daughter nuclei of $^{134}$In, $^{134}$Sn and $^{133}$Sn, at…
Normal and intruder configurations in $^{34}$Si populated in the $\beta^-$ decay of $^{34}$Mg and $^{34}$Al
The structure of Si34 was studied through γ spectroscopy separately in the β− decays of Mg34 and Al34 at the ISOLDE facility of CERN. Different configurations in Si34 were populated independently from the two recently identified β-decaying states in Al34 having spin-parity assignments Jπ=4− dominated by the normal configuration π(d5/2)−1⊗ν(f7/2) and Jπ=1+ by the intruder configuration π(d5/2)−1⊗ν(d3/2)−1(f7/2)2. The paper reports on spectroscopic properties of Si34 such as an extended level scheme, spin and parity assignments based on log(ft) values and γ-ray branching ratios, absolute β feeding intensities, and neutron emission probabilities. A total of 11 newly identified levels and 26 tr…