0000000000261029

AUTHOR

Yabin Jin

0000-0002-6991-8827

Topological surface wave metamaterials for robust vibration attenuation and energy harvesting

International audience; We propose topological metamaterials working in Hertz frequency range, constituted of concrete pillars on the soil ground in a honeycomb lattice. Based on the analog of the quantum valley Hall effect, a non-trivial bandgap is formed by breaking the inversion symmetry of the unit cell. A topological interface is created between two different crystal phases whose robustness against various defects and disorders is quantitatively analyzed. Finally, we take advantage of the robust and compact topological edge state for designing a harvesting energy device. The results demonstrate the functionality of the proposed structure for both robust surface vibration reduction and …

research product

Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging

International audience; Metasurfaces are planar metamaterials with a flat surface and a subwavelength thickness that are able to shape arbitrary wave fronts such as focusing or imaging. There is a broad interest in the literature about subwavelength focusing and imaging based on bulk metamaterials while the utilization of metasurfaces for elastic waves has rarely been reported. Here, we present a type of elastic metasurface consisting of a line of gradient resonant pillars for robust deep subwavelength focusing and imaging of elastic waves in a plate. Numerical approaches supported by analytic Huygens-Fresnel demonstrations show that the subwavelength full width at half maximum (FWHM) behav…

research product

Experimental realization of a pillared metasurface for flexural wave focusing

International audience; A metasurface is an array of subwavelength units with modulated wave responses that show great potential for the control of refractive/reflective properties in compact functional devices. In this work, we propose an elastic metasurface consisting of a line of pillars with gradient heights, erected on a homogeneous plate. The change in the resonant frequencies associated with the height gradient allows us to achieve transmitted phase response covering a range of 2π, while the amplitude response remains at a relatively high level. We employ the pillared units to design a focusing metasurface and compare the properties of the focal spots through simulation and experimen…

research product