0000000000261804

AUTHOR

Danny Münzberg

showing 7 related works from this author

First Cobalt(II) Spin Crossover Compound with N4S2-Donorset

2020

Herein we report the synthesis and characterization of a novel bis-tridentate 1,3,4-thiadiazole ligand (L = 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole). Two new mononuclear complexes of the type [MII(L)2](ClO4)2 (with M = FeII (C1) and CoII (C2)) have been synthesized, containing the new ligand (L). In both complexes the metal centers are coordinated by an N4S2-donorset and each of the two ligands is donating to the metal ion with just one of the tridentate pockets. The iron(II) complex (C1) is in the low spin [LS] state below room temperature and shows an increase in the magnetic moment only above 300 K. In contrast, the cobalt(II) complex (C2) shows a gradual spin crossover (S…

MagnetismPharmaceutical Sciencechemistry.chemical_elementThio-n<sub>4</sub>s<sub>2</sub>-donorsetAnalytical Chemistrylcsh:QD241-441Metalspin crossoverlcsh:Organic chemistrySpin crossoverDrug DiscoveryPhysical and Theoretical ChemistrySpin (physics)134-thiadiazolecobalt(ii)Magnetic momentLigandOrganic Chemistryiron(ii)CrystallographychemistryChemistry (miscellaneous)magnetismvisual_artvisual_art.visual_art_mediumMolecular MedicineCobaltMolecules
researchProduct

Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

2022

Atoms 10(2), 41 (2022). doi:10.3390/atoms10020041

Nuclear and High Energy Physicsatomic level schemeresonance ionizationgas celllaser spectroscopylaser spectroscopy; resonance ionization; atomic level scheme; gas cell; radiation detection; heavy actinidesddc:530radiation detectionCondensed Matter Physics530heavy actinidesAtomic and Molecular Physics and Optics
researchProduct

Resolution Characterizations of JetRIS in Mainz Using 164Dy

2022

Atoms 10(2), 57 (2022). doi:10.3390/atoms10020057

de Laval nozzlenobeliumNuclear and High Energy PhysicsScience & TechnologyRESONANCE IONIZATION SPECTROSCOPYPhysicsJetRIS; fluorescence spectroscopy; gas-jet; de Laval nozzle; nobeliumPhysics Atomic Molecular & Chemicalfluorescence spectroscopyCondensed Matter Physics530Atomic and Molecular Physics and OpticsJetRISPhysical SciencesELEMENTSgas-jetddc:530Physics::Atomic PhysicsNuclear ExperimentLASER SPECTROSCOPYAtoms
researchProduct

Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with RADRIS

2022

International audience; The radiation detection resonance ionization spectroscopy (RADRIS) technique enables laser spectroscopic investigations of the heaviest elements which are produced in atom-at-a-time quantities from fusion-evaporation reactions. To achieve a high efficiency, laser spectroscopy is performed in a buffer-gas environment used to thermalize and stop the high-energy evaporation residues behind the velocity filter SHIP. The required cyclic measurement procedure in combination with the applied filament collection for neutralization as well as confinement of the stopped ions and subsequent pulse-heat desorption constrains the applicability of the technique. Here, some of these…

Actinidesactinideslaser spectroscopygas celltutkimusmenetelmätSuper heavy elements[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Laser spectroscopy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]laserspektroskopiasuper heavy elementsGas cell
researchProduct

CCDC 1980403: Experimental Crystal Structure Determination

2020

Related Article: Fabian Fürmeyer, Danny Münzberg, Luca M. Carrella, Eva Rentschler|2020|Molecules|25|855|doi:10.3390/molecules25040855

Space GroupCrystallographybis{2-[({[5-({[(pyridin-2-yl)methyl]sulfanyl}methyl)-134-thiadiazol-2-yl]methyl}sulfanyl)methyl]pyridine}-iron(ii) diperchlorateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1980402: Experimental Crystal Structure Determination

2020

Related Article: Fabian Fürmeyer, Danny Münzberg, Luca M. Carrella, Eva Rentschler|2020|Molecules|25|855|doi:10.3390/molecules25040855

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis{2-[({[5-({[(pyridin-2-yl)methyl]sulfanyl}methyl)-134-thiadiazol-2-yl]methyl}sulfanyl)methyl]pyridine}-cobalt(ii) diperchlorateExperimental 3D Coordinates
researchProduct

CCDC 1980401: Experimental Crystal Structure Determination

2020

Related Article: Fabian Fürmeyer, Danny Münzberg, Luca M. Carrella, Eva Rentschler|2020|Molecules|25|855|doi:10.3390/molecules25040855

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis{2-[({[5-({[(pyridin-2-yl)methyl]sulfanyl}methyl)-134-thiadiazol-2-yl]methyl}sulfanyl)methyl]pyridine}-cobalt(ii) diperchlorateExperimental 3D Coordinates
researchProduct