0000000000263595

AUTHOR

Almudena Arcones

showing 3 related works from this author

Nucleosynthesis in magneto-rotational supernovae

2020

Abstract We present the nucleosynthesis of magneto-rotational supernovae (MR-SNe) including neutrino-driven and magneto-rotational-driven ejecta based, for the first time, on two-dimensional simulations with accurate neutrino transport. The models analysed here have different rotation and magnetic fields, allowing us to explore the impact of these two key ingredients. The accurate neutrino transport of the simulations is critical to analyse the slightly neutron rich and proton rich ejecta that are similar to the, also neutrino-driven, ejecta in standard supernovae. In the model with strong magnetic field, the r-process produces heavy elements up to the third r-process peak (A ∼ 195), in agr…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesGalaxySupernovaStarsNeutron starSpace and Planetary ScienceNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNeutrinoEjectaHypernovaAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

2018

This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…

Nuclear and High Energy PhysicsNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsKilonova01 natural sciences7. Clean energyNuclear Theory (nucl-th)Nucleosynthesis0103 physical sciencesBinary starddc:530Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentStellar evolutionNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonPhysics010308 nuclear & particles physicsAstronomyUniverseNeutron starSupernovaAstrophysics - Solar and Stellar Astrophysicsr-processJournal of Physics G: Nuclear and Particle Physics
researchProduct

The role of weak interactions in dynamic ejecta from binary neutron star mergers

2017

Weak reactions are critical for the neutron richness of the matter dynamically ejected after the merger of two neutron stars. The neutron richness, defined by the electron fraction (Ye), determines which heavy elements are produced by the r-process and thus directly impacts the kilonova light curve. In this work, we have performed a systematic and detailed post-processing study of the impact of weak reactions on the distribution of the electron fraction and of the entropy on the dynamic ejecta obtained from an equal mass neutron star binary merger simulated in full general relativity and with microscopic equation of state. Previous investigations indicated that shocks increase Ye, however o…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics and Astronomy (miscellaneous)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsWeak interactionKilonovaLight curve7. Clean energy01 natural sciencesNeutron starNucleosynthesis0103 physical sciencesNeutronNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct