0000000000263858

AUTHOR

Tomohiro Yamaguchi

showing 3 related works from this author

High-pressure optical absorption in InN: Electron density dependence in the wurtzite phase and reevaluation of the indirect band gap of rocksalt InN

2012

We report on high-pressure optical absorption measurements on InN epilayers with a range of free-electron concentrations (5×1017–1.6×1019 cm−3) to investigate the effect of free carriers on the pressure coefficient of the optical band gap of wurtzite InN. With increasing carrier concentration, we observe a decrease of the absolute value of the optical band gap pressure coefficient of wurtzite InN. An analysis of our data based on the k·p model allows us to obtain a pressure coefficient of 32 meV/GPa for the fundamental band gap of intrinsic wurtzite InN. Optical absorption measurements on a 5.7-μm-thick InN epilayer at pressures above the wurtzite-to-rocksalt transition have allowed us to o…

Electron densityPhase transitionMaterials scienceCondensed matter physicsBand gapCondensed Matter PhysicsPressure coefficientIII-V NitridesElectronic Optical and Magnetic MaterialsFISICA APLICADAAlloysDirect and indirect band gapsAbsorption (logic)StabilityEnergy (signal processing)Wurtzite crystal structurePhysical Review B
researchProduct

Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

2014

We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the lowfrequency (electronic) dielectric constant e1 . Negative pressure coefficients of -8.8 × 10-2 GPa-1 and -14.8 × 10-2 GPa-1 are obtained for the wurtzite and rocksalt phases, respectively. The results are discussed …

Materials scienceIndium nitridePhysics and Astronomy (miscellaneous)Condensed matter physicsBand gapHydrostatic pressureRefractive indexDielectricHigh pressureCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryBand gapPhononsCritical point phenomenaThin filmElectronic band structureRefractive indexWurtzite crystal structureApplied Physics Letters
researchProduct

High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy

2013

We present an experimental and theoretical lattice-dynamical study of InN at high hydrostatic pressures. We perform Raman scattering measurements on five InN epilayers, with different residual strain and free electron concentrations. The experimental results are analyzed in terms of ab initio lattice-dynamical calculations on both wurtzite InN (w-InN) and rocksalt InN (rs-InN) as a function of pressure. Experimental and theoretical pressure coefficients of the optical modes in w-InN are compared, and the role of residual strain on the measured pressure coefficients is analyzed. In the case of the LO band, we analyze and discuss its pressure behavior considering the double-resonance mechanis…

Free electron modelMaterials scienceIndium nitridePhononAb initioMolecular physicsChargeScatteringN-type inpMathematics::Group TheoryCondensed Matter::Materials Sciencesymbols.namesakechemistry.chemical_compoundEffective mass (solid-state physics)DependencePseudopotentialsWurtzite crystal structureCondensed matter physicsCondensed Matter PhysicsIII-V NitridesGanElectronic Optical and Magnetic MaterialschemistryFISICA APLICADAsymbolsModesConstantsRaman spectroscopyStabilityRaman scatteringPhysical Review B
researchProduct