CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin
Summary Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless…
Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment
Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor…
Cancer cell targeting by CAR-T cells: A matter of stemness
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient’s immune system boosting. Within the tumor mass a subpopulation of cancer cells, known…
Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells
Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased ex…
Recapitulating thyroid cancer histotypes through engineering embryonic stem cells
AbstractThyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248…
Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy
Simple Summary Colorectal cancer stem cells (CR-CSCs) play a pivotal role in the therapy resistance and relapse of CRC patients. Herein we demonstrate that new treatment approaches comprising polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively, hamper the viability of CR-CSCs as well as synergizing with 5-fluorouracil and oxaliplatin (FOX)-based chemotherapy. Extract fractions containing Nobiletin and Xanthohumol, in combination with chemotherapy, decreased stemness properties of CR-CSCs and restrained the outgrowth of chemoresistant metastatic CR-CSCs. These data pinpoint Nobiletin and Xanthohumol as efficacious anti-cancer compounds in…