0000000000266273
AUTHOR
Sandip Saha
Ligand mediated structural diversity of copper(II)-azido moiety: Synthesis, structure and magnetic study
Abstract Two copper azido complexes [Cu4(L1)4(µ1,1-N3)3(N3)] (1) and [{Cu2(L2)(N-benzylen)(µ1,1-N3)3(µ1,1,3-N3(N3)]n (2) have been synthesized by the reaction of aqueous solution of sodium azide to a methanolic solution of copper perchlorate hexahydrate and corresponding Schiff-base ligands. Schiff bases HL1 and HL2 act as blocking coligands are derived from the 1:1 condensation of N-benzyl ethylenediamine with Salicyldehyde and 2-hydroxy-5-chloroacetophenone respectively (N-benzylen is the N-benzyl ethylenediamine). These two complexes are characterized by the elemental analysis, FT-IR, single crystal X-ray diffraction, powder XRD and also TGA. Single crystal X-ray structural study reveals…
Double azido-bridged and mixed-bridged binuclear copper(II) and nickel(II) compounds with N,N,O-donor Schiff bases: Synthesis, structure, magnetic and DFT study
Abstract Two dinuclear complexes μ1,1-azido bridged [Cu(L1)(N3)]2 (1) and μ-phenoxo, μ1,1-azido bridged [Ni2(L2)2(μ1,1-N3)(N3) H2O] (2) bearing HL1 and HL2 as a blocking co-ligands produced by the 1:1 condensation of N-benzyl ethylenediamine with ortho-hydroxy acetophenone and N-methyl propanediamine with 3-methoxy salicylaldehyde respectively, have been synthesized and successfully characterized by elemental analyses, IR and electronic spectroscopy, single-crystal X-ray diffraction, variable temperature magnetic study and DFT studies. X-ray crystal structures of 1 reveal that the Cu(II) ion displays a five-coordinate square pyramidal coordination with a centro-symmetric μ1,1-azido bridging…
Azido bridged binuclear copper(ii) Schiff base compound: synthesis, structure and electrical properties
An azido bridged dinuclear complex [Cu(L−)(μ1,1N3)]2 (1) was synthesized by a 1 : 1 condensation of N-cyclohexyl-1,3-propanediamine and 5-bromosalicylaldehyde (HL). The complex was subsequently characterized based on elemental analyses, IR, single-crystal X-ray diffraction, a Hirshfeld study, FESEM, ESI-MS, powder XRD and also DFT studies successfully. The X-ray crystal structure of complex 1 revealed that the Cu(II) ion exhibited a definite five-coordinate square pyramidal coordination arrangement with a centro-symmetric μ 1,1-azido bridging in the end-on mode and formed a dimeric structure. The optical direct band gap of complex 1 was estimated to be 2.84 eV. The current–voltage character…
Metal-to-metal electron transfer and magnetic interactions in a mixed-valence Prussian Blue analogue
Abstract In search of a new Prussian Blue analogue exhibiting fascinating magnetic properties, potassium manganese hexacyanoferrate, K 0.2 Mn 0 . 66 II Mn 1.44 III [ Fe 0.2 II Fe 0.8 III ( CN ) 6 ] O 0.66 ( CH 3 COO ) 1.32 ] , 7.6H2O, has been synthesized. This compound undergoes a paramagnetic to ferrimagnetic transition at 10 K. Temperature and magnetic field-dependent magnetization studies of this compound have revealed different spin alignments below and above 3 K. The nature of possible magnetic interactions between the nearest neighbor magnetic centers has been discussed in order to explore the origin of the observed magnetic interactions. Mossbauer spectroscopic study at different te…
Unexplored analytics of some novel 3d–4f heterometallic Schiff base complexes
Three heterometallic Schiff-base complexes of Cu having Pr, Nd and Sm as the heteroatoms have been synthesized. The compounds have also been characterized by their IR spectra and CHN analysis. The single crystal structures of these compounds have been studied from the X-ray crystallographic data. To the best of our knowledge the article describes the possibility of application of these compounds in the field of species dependent anion sensing for the first time. Amongst a number of anionic species, certain sulphur species were found to have greater reactivity towards a Schiff-base complex as they can incur probable changes in the molecular complexity. The S2O82−and S2O32− species could modi…
Synthesis, X-ray structure and magnetic properties of the azido adducts of quadridentate Schiff base manganese(III) complexes
Abstract Two new azido derivatives of quadridentate Schiff base manganese(III) complexes have been synthesized and characterized structurally and magnetically. X-ray structure analysis revealed that both complexes viz. [Mn2(L1)2(N3)2] (1) and [Mn2(L2)2(N3)2] (2), where H2L1=N,N′-(1,1-dimethylethylene)-bis-(salicylaldiimine) and H2L2=bis(o-hydroxyacetophenone)-ethylenediimine exist as phenoxo-bridged dimer. The magnetic susceptibility of the complexes has been measured in the 5–300 K range. At room temperature the MnIII ions in complexes 1 and 2 possess an S=4 ground state. The global magnetic interaction in complex 1 is found to be ferromagnetic, while for complex 2 it is anti-ferromagnetic.
Quantitative estimation of the antiferromagnetic interaction between Cu(II) and Sm(III) in two dimensional heterometallic coordination polymer with isonicotinic acid as tectons
Abstract The syntheses, structure and magnetic property of a novel two dimensional 3d–4f coordination polymer 2∞[CuSmL(NO3)2(IN)], 1 (L2− = N, N′- propylenedi (3-ehoxysalicylideneiminato), the dianion of the Schiff base obtained from the 2:1 condensation of 3-ethoxysalicylaldehyde with 1,3-propanediamine, IN− = the isonicotinate ion) has been reported. The heterobinuclear units are connected through exo-bidentate ligands IN−, leading to an extended 2D structure. A fit of the magnetic susceptibility data yields gCu = 2.109, gSm = 0.476, JCuSm = − 0.893 cm− 1, θ = − 3.37 K, and TIP = 0.001257 emu K mol− 1 with a good discrepancy factor of Rχ = 4.4 × 10− 5. This is the first quantitative esti…
Mixed phenoxo and azido bridged dinuclear nickel(II) and copper(II) compounds with N,N,O-donor schiff bases: Synthesis, structure, DNA binding, DFT and molecular docking study
Abstract Two dinuclear complexes, µ-phenoxo, µ1,1-azido bridged [Ni2(L)2(µ1,1-N3)(N3)(CH3OH)] (1) and µ-phenoxo, µ1,1-azido bridged [Cu2(L)2(µ1,1-N3)(N3)] (2) bearing HL as a blocking co-ligand produced by the 1:1 condensation of N-methyl 1,3 propanediamine with o-vanillin have been synthesized and successfully characterized by elemental analyses, IR and electronic spectroscopy, single-crystal X-ray diffraction for 1 and DFT optimization for 2. X-ray crystal structure discloses that the asymmetric unit of 1 consists of two nickel(II) ions exhibiting a six-coordinate octahedral coordination with µ-phenoxo, µ1,1-azido bridging dimeric structure. The DFT optimization of 2 reveals the five-coor…
CCDC 937393: Experimental Crystal Structure Determination
Related Article: Sandip Saha, Debabrata Biswas, Partha Pratim Chakrabarty, Dieter Schollmeyer, Atish Dipankar Jana, Hiroshi Sakiyama, Masahiro Mikuriya|2013|Inorg.Chem.Commun.|36|212|doi:10.1016/j.inoche.2013.08.032
CCDC 2021182: Experimental Crystal Structure Determination
Related Article: Mrinmoy Ghosh, Partha Pratim Chakrabarty, Atish Dipankar Jana, Dieter Schollmeyer, Hiroshi Sakiyama, Masahiro Mikuriya, Rakesh Debnath, Paula Brand��o, Dasarath Mal, Sandip Saha|2022|Inorg.Chim.Acta|531|120713|doi:10.1016/j.ica.2021.120713
CCDC 998456: Experimental Crystal Structure Determination
Related Article: Partha Pratim Chakrabarty, Sanjib Giri, Dieter Schollmeyer, Hiroshi Sakiyama, Masahiro Mikuriya, Ananda Sarkar, Sandip Saha|2015|Polyhedron|89|49|doi:10.1016/j.poly.2014.12.033
CCDC 2021183: Experimental Crystal Structure Determination
Related Article: Mrinmoy Ghosh, Partha Pratim Chakrabarty, Atish Dipankar Jana, Dieter Schollmeyer, Hiroshi Sakiyama, Masahiro Mikuriya, Rakesh Debnath, Paula Brand��o, Dasarath Mal, Sandip Saha|2022|Inorg.Chim.Acta|531|120713|doi:10.1016/j.ica.2021.120713
CCDC 1501314: Experimental Crystal Structure Determination
Related Article: Animesh Pradhan, Shobhraj Haldar, Krishnasis Basu Mallik, Mrinmoy Ghosh, Manindranath Bera, Nayim Sepay, Dieter Schollmeyer, Sumanta Kumar Ghatak, Sanchita Roy, Sandip Saha|2019|Inorg.Chim.Acta|484|197|doi:10.1016/j.ica.2018.09.026
CCDC 973932: Experimental Crystal Structure Determination
Related Article: Partha Pratim Chakrabarty, Sandip Saha, Kamalika Sen, Atish Dipankar Jana, Debarati Dey, Dieter Schollmeyer, Santiago García-Granda|2014|RSC Advances|4|40794|doi:10.1039/C4RA04531A
CCDC 1879738: Experimental Crystal Structure Determination
Related Article: Mrinmoy Ghosh, Sandip Saha, Abhijit Banerjee, Dieter Schollmeyer, Ananda Sarkar, Saikat Banerjee|2019|New J.Chem.|43|16255|doi:10.1039/C9NJ02672J
CCDC 973931: Experimental Crystal Structure Determination
Related Article: Partha Pratim Chakrabarty, Sandip Saha, Kamalika Sen, Atish Dipankar Jana, Debarati Dey, Dieter Schollmeyer, Santiago García-Granda|2014|RSC Advances|4|40794|doi:10.1039/C4RA04531A
CCDC 973930: Experimental Crystal Structure Determination
Related Article: Partha Pratim Chakrabarty, Sandip Saha, Kamalika Sen, Atish Dipankar Jana, Debarati Dey, Dieter Schollmeyer, Santiago García-Granda|2014|RSC Advances|4|40794|doi:10.1039/C4RA04531A
CCDC 998455: Experimental Crystal Structure Determination
Related Article: Partha Pratim Chakrabarty, Sanjib Giri, Dieter Schollmeyer, Hiroshi Sakiyama, Masahiro Mikuriya, Ananda Sarkar, Sandip Saha|2015|Polyhedron|89|49|doi:10.1016/j.poly.2014.12.033