0000000000266852

AUTHOR

B. A. Kniehl

showing 3 related works from this author

Theory for the FCC-ee : Report on the 11th FCC-ee Workshop

2019

The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of magnitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory $e^+e^-$ collider constitutes a real challenge to the theory and to p…

High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)FOS: Physical sciencesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentHigh Energy Physics - Experiment
researchProduct

Heavy flavour production at the LHC: Theoretical Aspects

2008

CERN-DESY workshop on "HERA and the LHC" DESY-PROC-2009-02; ISBN 978-3-935702-32-4; ISSN 1435-8077; International audience; A proper inclusion of heavy quark mass effects in Parton Distribution Function fits has proved crucial. We present a review these effects in DIS and their impact on global analyses and lay out all elements of a properly defined general mass variable flavor number scheme (GM VFNS) that are shared by all modern formulations of the problem. We also report about progress in a number of theoretical problems related to exclusive measurements of heavy flavors. These topics include fragmentation functions for charmed mesons including finite mass effects, fragmentation function…

High Energy Physics::Lattice[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::PhenomenologyHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

$\Lambda_c^{\pm}$ production in pp collisions with a new fragmentation function

2020

Physical review / D D 101(11), 114021 (2020). doi:10.1103/PhysRevD.101.114021

p p: scatteringLambda/c+: productiondata analysis methodPhysics::Instrumentation and Detectors14.40.NdBELLEannihilation [electron positron]electron positron: annihilationfragmentation [charm]530fragmentation functionquarkALICEfragmentationscattering [p p]ddc:530charm: fragmentationStrong InteractionsNuclear Experimentproduction [Lambda/c+]OPALCMSviolation [universality]High Energy Physics::PhenomenologytensionLHC-B12.39.StHigh Energy Physics - Phenomenology12.38.BxCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentuniversality: violation13.85.Ni
researchProduct