0000000000267168

AUTHOR

E. Gregor

showing 8 related works from this author

The GALILEO γ-ray array at the Legnaro National Laboratories

2021

Abstract GALILEO, a new 4 π high-resolution γ -detection array, based on HPGe detectors, has been developed and installed at the Legnaro National Laboratories. The GALILEO array greatly benefits from a fully-digital read-out chain, customized DAQ, and a variety of complementary detectors to improve the resolving power by the detection of particles, ions or high-energy γ -ray transitions. In this work, a full description of the array, including electronics and DAQ, is presented together with its complementary instrumentation.

PhysicsNuclear and High Energy PhysicsSiliconbusiness.industryInstrumentationHigh-resolution γ-ray spectroscopyDetectorNeutronDAQ; Electronics; High-resolution γ-ray spectroscopy; HPGe; Neutron; SiliconSemiconductor detectorDAQOpticsData acquisitionElectronicsGalileo (vibration training)ElectronicsbusinessHpge detectorHPGeInstrumentation
researchProduct

'beta'-decay studies of neutron-rich 'TL', 'PB', and 'BI' isotopes

2014

The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft fur Schwerionenforschung laboratory to investigate the β decay of neutron-rich nuclei just beyond 208Pb. This paper reports on β-delayed γ decays of 211-213Tl, 215Pb, and 215-219Bi de-exciting states in the daughters 211-213Pb, 215Bi, and 215-219Po. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden β transitions in this mass region is discussed. © 2014 American Physical Society.

PhysicsNuclear and High Energy PhysicsIsotopeSHELL modelchemistry.chemical_elementUraniumBeta decayrelativistic projectile fragmentationRISING spectrometerIonizing radiationNuclear physicschemistrySPINDouble beta decaySubatomic Physicsr-processNeutronbeta decayAtomic physics
researchProduct

Lifetime measurement of neutron-rich even-even molybdenum isotopes

2017

D. Ralet et al. -- 11 pags., 10 figs., 3 tabs.

chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsSubatomic Physics0103 physical sciencesNeutronddc:530010306 general physicsMass numberPhysicsIsotope010308 nuclear & particles physicsrelativistic projectile fragmentation3. Good healthsecondary fragmentationgamma-ray spectroscopychemistryMolybdenumExcited stateQuadrupoleFísica nuclearAGATAAtomic physicsEnergy (signal processing)
researchProduct

Isomeric decay spectroscopy of theBi217isotope

2014

The structure of the neutron-rich bismuth isotope 217Bi has been studied for the first time. The fragmentation of a primary 238U beam at the FRS-RISING setup at GSI was exploited to perform γ-decay spectroscopy, since μs isomeric states were expected in this nucleus. Gamma rays following the decay of a t1/2=3 μs isomer were observed, allowing one to establish the low-lying structure of 217Bi. The level energies and the reduced electric quadrupole transition probability B(E2) from the isomeric state are compared to large-scale shell-model calculations.

PhysicsNuclear and High Energy PhysicsIsotopeGamma rayIsomeric shiftmedicine.anatomical_structureFragmentation (mass spectrometry)QuadrupolemedicineGamma spectroscopyAtomic physicsNuclear ExperimentSpectroscopyNucleusPhysical Review C
researchProduct

New μs Isomers in the Neutron-rich 210Hg Nucleus

2013

Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in Hg-210: the 8(+) isomer expected from the seniority scheme in the vg(9/2) shell and a second one at low spin and low excitation energy. The decay strength of the 8(+) isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3(-) state, although this is in contrast with theoretical expectations. (C) 2013 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsIsotopechemistry.chemical_elementUraniummedicine.anatomical_structurechemistryFragmentation (mass spectrometry)Subatomic PhysicsmedicineNeutronAtomic physicsNucleusExcitation
researchProduct

Low-lying electric dipole gamma-continuum for the unstable Fe-62,64 nuclei : Strength evolution with neutron number

2020

6 pags., 4 figs.

62Nuclear and High Energy Physics64PhononAstrophysics::High Energy Astrophysical PhenomenaBinding energyNuclear TheoryCoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciences64Fe530Dipole excitation around neutron threshold62FeSubatomär fysik0103 physical sciencesSubatomic Physicsddc:530NeutronNuclear Physics - ExperimentNuclear structure010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physics62 Fe62; Fe; 64; Fe; Dipole excitation around neutron threshold; Nuclear structureNuclear structure64 FeFelcsh:QC1-999DipoleFe-64Neutron numberFe-62AGATAAtomic physicslcsh:Physics
researchProduct

Study of isomeric states in $^{198,200,202,206}$Pb and $^{206}$Hg populated in fragmentation reactions

2018

International audience; Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populatedfollowing reactions of a relativistic 208Pb primary beam impinging on a9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg wereisotopically separated and implanted in a passive stopper positioned in thefocal plane of the GSI Fragment Separator. Delayed γ rays were detected withthe Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluatedand interpreted with shell-model calculations. The momentumdependentpopulation of isomeric states in the two-nucleon hole nuclei206Pb/206Hg was found to differ from the population of multi neutron-holeisomeric states in 198…

Nuclear and High Energy Physicsisomeric decaysAstrophysics::High Energy Astrophysical PhenomenaPopulationNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesFragmentation (mass spectrometry)Subatomic Physics0103 physical sciencesGamma spectroscopyGamma-ray spectroscopy010306 general physicseducationNuclear ExperimentPhysicseducation.field_of_studyIsotope010308 nuclear & particles physicsNuclear shell modeldirect reactionsrelativistic projectile fragmentationelectromagnetic transitionsnuclear shell modelAGATAPreSPEC-AGATAAtomic physicsBeam (structure)
researchProduct

βdecay of102Y produced in projectile fission of238U

2012

The population of 102Zr following the β decay of 102Y produced in the projectile fission of 238U at the GSI facility in Darmstadt, Germany has been studied. 102Y is known to ß decay into 102Zr via two states, one of high spin and the other low spin. These states preferentially populate different levels in the 102Zr daughter. In this paper the intensities of transitions in 102Zr observed are compared with those from the decay of the low-spin level studied at the TRISTAN facility at Brookhaven National Laboratory and of the high-spin level studied at the JOSEF separator at the Kernforschungsanlage Jülich.

PhysicsHistoryeducation.field_of_studyCluster decayFissionProjectilePopulationBeta decayddc:Computer Science ApplicationsEducationNuclear physicsSubatomic PhysicsHigh Energy Physics::ExperimentAtomic physicsNuclear ExperimentSpin (physics)National laboratoryeducationJournal of Physics: Conference Series
researchProduct