0000000000267484
AUTHOR
André Loescher
Scaling of intrinsic domain wall magneto-resistance with confinement in electromigrated nanocontacts
In this work we study the evolution of intrinsic domain wall magnetoresistance (DWMR) with domain wall confinement. Clean permalloy notched half-ring nanocontacts are fabricated using a special ultra-high vacuum electromigration procedure to tailor the size of the wire in-situ and through the resulting domain wall confinement we tailor the domain wall width from a few tens of nm down to a few nm. Through measurements of the dependence of the resistance with respect to the applied field direction we extract the contribution of a single domain wall to the MR of the device, as a function of the domain wall width in the confining potential at the notch. In this size range, an intrinsic positive…
Domain wall pinning in ultra-narrow electromigrated break junctions
The study of magnetic domain walls in constrained geometries is an important topic, yet when dealing with extreme nanoscale magnetic systems artefacts can often dominate the measurements and obscure the effects of intrinsic magnetic origin. In this work we study the evolution of domain wall depinning in electromigrated ferromagnetic junctions which are both initially fabricated and subsequently tailored in-situ in clean ultra-high vacuum conditions. Carefully designed Ni(80)Fe(20) (Permalloy) notched half-ring structures are fabricated and investigated as a function of constriction width by tailoring the size of the contact using controlled in-situ electromigration. It is found that the dom…