0000000000267741

AUTHOR

Qinming Wu

showing 5 related works from this author

Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template.

2019

A large amount of zeolite structures are still not synthetically available or not available in the form of aluminosilicate currently. Despite significant progress in the development of predictive concepts for zeolite synthesis, accessing some of these new materials is still challenging. One example is the IWR structure as well. Despite successful synthesis of Ge-based IWR zeolites, direct synthesis of aluminosilicate IWR zeolite is still not successful. In this report we show how a suitable organic structure directing agent (OSDA), through modeling of an OSDA/zeolite cage interaction, could access directly the aluminum-containing IWR structure (denoted as COE-6), which might allow access to…

General Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundColloid and Surface ChemistrychemistryChemical engineeringAluminosilicateGeneral chemistryHydrothermal synthesisMethanolZSM-5SelectivityZeoliteJournal of the American Chemical Society
researchProduct

Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines

2019

Metal-exchanged zeolites with small pore sizes have attracted much attention in recent years due to their application in the selective catalytic reduction (SCR) of NOx in diesel engines. Typically, copper-chabazite (e.g. Cu-SSZ-13) has been gradually used as an SCR catalyst in heavy-duty diesel vehicles over the last decade due to its relatively excellent catalytic performance and stability. However, most SSZ-13 zeolites are still prepared via the traditional hydrothermal process in the presence of organic templates, requiring consecutive solid separation and thermal treatment steps to achieve the final zeolite products. In recent years, several strategies for the environmentally friendly p…

Fluid Flow and Transfer ProcessesDiesel fuelMaterials scienceChemical engineeringChemistry (miscellaneous)Process Chemistry and TechnologyChemical Engineering (miscellaneous)Selective catalytic reductionZeoliteEnvironmentally friendlyCatalysisNOxCatalysisReaction Chemistry & Engineering
researchProduct

Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite

2019

Aluminosilicate SSZ-39 zeolite has been successfully prepared by transformation from ZSM-5 and beta zeolite in the presence of N,N-diethyl-cis-2,6-dimethylpiperidinium hydroxide (DMPOH) under hydrothermal conditions. Catalytic tests in the selective catalytic reduction of NOx with NH3 (NH3-SCR) show that the copper-exchanged products synthesized from the interzeolite transformation exhibit excellent catalytic performance.

Renewable Energy Sustainability and the EnvironmentChemistrySelective catalytic reduction02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyHydrothermal circulationCatalysischemistry.chemical_compoundChemical engineeringAluminosilicateHydroxideGeneral Materials ScienceZSM-50210 nano-technologyZeoliteNOxJournal of Materials Chemistry A
researchProduct

A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite

2020

There are a large number of zeolites, such as ITH, that cannot be prepared in the aluminosilicate form. Now, the successful synthesis of aluminosilicate ITH zeolite using a simple cationic oligomer as an organic template is presented. Key to the success is that the cationic oligomer has a strong complexation ability with aluminum species combined with a structural directing ability for the ITH structure similar to that of the conventional organic template. The aluminosilicate ITH zeolite has very high crystallinity, nanosheet-like crystal morphology, large surface area, fully four-coordinated Al species, and abundant acidic sites. Methanol-to-propylene (MTP) tests reveal that the Al-ITH zeo…

010405 organic chemistryChemistryCationic polymerizationchemistry.chemical_elementGeneral MedicineGeneral Chemistry010402 general chemistryCrystal morphology01 natural sciencesOligomerCatalysis0104 chemical scienceschemistry.chemical_compoundCrystallinityChemical engineeringAluminosilicateAluminiumZeoliteSelectivityAngewandte Chemie International Edition
researchProduct

Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water

2017

High silica CHA zeolite plays an important role in selective catalytic reduction of NOx with NH3 (NH3-SCR), but its synthesis is not highly efficient due to the use of a relatively high-cost structural directing agent (SDA) N,N,N-trimethyl-adamantammonium hydroxide (TMAdaOH) and relatively long crystallization time under hydrothermal conditions. Herein, we report an efficient and rapid synthesis of a high silica CHA zeolite possessing good crystallinity and uniform crystals (CHA-ST). The method includes interzeolite transformation of high silica FAU zeolite in the absence of water but the presence of zeolite seeds and a bromide form of the SDA. The absence of water in the synthesis signific…

ChabaziteMaterials scienceRenewable Energy Sustainability and the EnvironmentInorganic chemistrySelective catalytic reduction02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCatalysislaw.inventionSSZ-13chemistry.chemical_compoundchemistryChemical engineeringBromidelawHydroxideGeneral Materials ScienceCrystallization0210 nano-technologyZeoliteJournal of Materials Chemistry A
researchProduct