0000000000267745

AUTHOR

Chi Lei

0000-0003-0416-1269

Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template.

A large amount of zeolite structures are still not synthetically available or not available in the form of aluminosilicate currently. Despite significant progress in the development of predictive concepts for zeolite synthesis, accessing some of these new materials is still challenging. One example is the IWR structure as well. Despite successful synthesis of Ge-based IWR zeolites, direct synthesis of aluminosilicate IWR zeolite is still not successful. In this report we show how a suitable organic structure directing agent (OSDA), through modeling of an OSDA/zeolite cage interaction, could access directly the aluminum-containing IWR structure (denoted as COE-6), which might allow access to…

research product

Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite

Aluminosilicate SSZ-39 zeolite has been successfully prepared by transformation from ZSM-5 and beta zeolite in the presence of N,N-diethyl-cis-2,6-dimethylpiperidinium hydroxide (DMPOH) under hydrothermal conditions. Catalytic tests in the selective catalytic reduction of NOx with NH3 (NH3-SCR) show that the copper-exchanged products synthesized from the interzeolite transformation exhibit excellent catalytic performance.

research product

A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite

There are a large number of zeolites, such as ITH, that cannot be prepared in the aluminosilicate form. Now, the successful synthesis of aluminosilicate ITH zeolite using a simple cationic oligomer as an organic template is presented. Key to the success is that the cationic oligomer has a strong complexation ability with aluminum species combined with a structural directing ability for the ITH structure similar to that of the conventional organic template. The aluminosilicate ITH zeolite has very high crystallinity, nanosheet-like crystal morphology, large surface area, fully four-coordinated Al species, and abundant acidic sites. Methanol-to-propylene (MTP) tests reveal that the Al-ITH zeo…

research product