0000000000267763

AUTHOR

Andreas Hanisch

showing 3 related works from this author

Multicompartment Micelles with Adjustable Poly(ethylene glycol) Shell for Efficient in Vivo Photodynamic Therapy

2014

We describe the preparation of well-defined multicompartment micelles from polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-block-poly(methacrylic acid) (BVqMAA) triblock terpolymers and their use as advanced drug delivery systems for photodynamic therapy (PDT). A porphyrazine derivative was incorporated into the hydrophobic core during self-assembly and served as a model drug and fluorescent probe at the same time. The initial micellar corona is formed by negatively charged PMAA and could be gradually changed to poly(ethylene glycol) (PEG) in a controlled fashion through interpolyelectrolyte complex formation of PMAA with positively charged poly(ethylene glycol)-block-p…

Poly ethylene glycolMaterials sciencemedicine.medical_treatmentGeneral EngineeringGeneral Physics and AstronomyPhotodynamic therapyMicellePolyethylene Glycolschemistry.chemical_compoundInhibitory Concentration 50chemistryMethacrylic acidMicroscopy Electron TransmissionPhotochemotherapyIn vivoPolymer chemistryPEGylationmedicineGeneral Materials SciencePyridiniumMethyl SulfateMicellesACS nano
researchProduct

Hidden Structural Features of Multicompartment Micelles Revealed by Cryogenic Transmission Electron Tomography

2014

The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic a…

Electron Microscope TomographyMaterials sciencePolymersProton Magnetic Resonance Spectroscopyta221electron tomographyGeneral Physics and AstronomyIonic bondingNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesMicelleCopolymerGeneral Materials ScienceSoft matterMicellesta218ta214ta114interpolyelectrolyte complexesGeneral EngineeringCationic polymerization021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringChromatography GelCryo-electron tomographySelf-assembly0210 nano-technologyACS Nano
researchProduct

Bulk morphologies of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) triblock terpolymers

2015

Abstract The self-assembly of block copolymers in the bulk phase enables the formation of complex nanostructures with sub 100 nm periodicities and long-range order, both relevant for nanotechnology applications. Here, we map the bulk phase behavior of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) (SBT) triblock terpolymers on a series of narrowly distributed polymers with widely different block volume fractions, ϕS, ϕB and ϕT. In dependence of ϕ, we find the lamella–lamella, core-shell cylinder, cylinder-in-lamella and core-shell gyroid morphology, but also a rarely observed cylinder-in-lamella phase. The bulk morphologies are thoroughly characterized by transmission e…

chemistry.chemical_classificationta214Materials scienceta114Polymers and PlasticsSmall-angle X-ray scatteringta221Organic Chemistryblock copolymerPolymerMethacrylateCrystallographychemistry.chemical_compoundPolybutadienesmall-angle x-ray scattering (SAXS)Chemical engineeringchemistryPhase (matter)morphologytransmission electron microscopy (TEM)Materials ChemistryCopolymerPolystyreneta218GyroidPolymer
researchProduct