0000000000268849
AUTHOR
David Grémillet
Ecological insights from three decades of animal movement tracking across a changing Arctic
Ecological “big data” Human activities are rapidly altering the natural world. Nowhere is this more evident, perhaps, than in the Arctic, yet this region remains one of the most remote and difficult to study. Researchers have increasingly relied on animal tracking data in these regions to understand individual species' responses, but if we want to understand larger-scale change, we need to integrate our understanding across species. Davidson et al. introduce an open-source data archive that currently hosts more than 15 million location data points across 96 species and use it to show distinct climate change responses across species. Such ecological “big data” can lead to a wider understandi…
Large birds travel farther in homogeneous environments
Aim: Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos). Location: Global. Time period: 2003–2015. Major taxa studied: Birds. Methods: We compiled GPS tracking data for 386 individuals across 3…
Climate change and the ecology and evolution of Arctic vertebrates.
25 pages; International audience; Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have already been documented. Changes in phenology and range w…
Multispecies tracking reveals a major seabird hotspot in the North Atlantic
The conservation of migratory marine species, including pelagic seabirds, is challenging because their movements span vast distances frequently beyond national jurisdictions. Here, we aim to identify important aggregations of seabirds in the North Atlantic to inform ongoing regional conservation efforts. Using tracking, phenology, and population data, we mapped the abundance and diversity of 21 seabird species. This revealed a major hotspot associated with a discrete area of the subpolar frontal zone, used annually by 2.9–5 million seabirds from ≥56 colonies in the Atlantic: the first time this magnitude of seabird concentrations has been documented in the high seas. The hotspot is temporal…
Climate change and the ecology and evolution of Arctic vertebrates
Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have already been documented. Changes in phenology and range will occur for most species but wil…
Data from: Large birds travel farther in homogeneous environments
Aim: Animal movement is an important determinant of individual survival, population dynamics, and ecosystem structure and function. Yet it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside of the migratory period, we examined how the distribution of resources affect the movement patterns of both large terrestrial birds (e.g., raptors, bustards, hornbills) and waterbirds (e.g., cranes, storks, ducks, geese, flamingos). Location: Global Time Period: 2003 - 2015 Major taxa studied: Birds Methods: We compiled GPS tracking data for 386 individuals across 36 bird specie…