0000000000269519

AUTHOR

N. Picot-clemente

showing 6 related works from this author

First search for point sources of high-energy cosmic neutrinos with the ANTARES neutrino telescope

2011

Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 0.1deg. The neutrino flux sensitivity is 7.5 ¿ 10 -8(E ¿/ GeV) -2 GeV -1 s -1 cm -2 for the part of the sky that is always visible (¿ < -48deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

FLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectorsmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesDeclinationneutrinos; cosmic rays; astroparticle physicscosmic rays0103 physical sciencesAngular resolutionALGORITHMNeutrinosDETECTOR010303 astronomy & astrophysicsCosmic raysmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCOSMIC cancer databaseMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorneutrinosASTRONOMYAstronomy and Astrophysicsastroparticle physics13. Climate actionSpace and Planetary ScienceSkyFISICA APLICADAddc:520Física nuclearHigh Energy Physics::ExperimentNeutrinoAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Performance of the front-end electronics of the ANTARES neutrino telescope

2010

ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named Analogue Ring Samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the fu…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsOptical linkDigital dataFOS: Physical sciencesAnalog-to-digital converterNeutrino telescope01 natural sciencesMultiplexinglaw.inventionPhototubeApplication-specific integrated circuitPhotomultiplier tubelawASICs0103 physical sciences14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationPhysics010308 nuclear & particles physicsbusiness.industryASICAstrophysics::Instrumentation and Methods for AstrophysicsElectrical engineeringCIRCUITFront-end electronicsChip[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Física nuclearUNDERWATER DETECTORasic; front-end electronics; neutrino telescope; photomultiplier tubeAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSYSTEMNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The ANTARES telescope neutrino alert system

2012

The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

Optical telescopesPhysics::Instrumentation and DetectorsAstrophysics7. Clean energy01 natural sciencesGamma ray burstsFOLLOW-UP OBSERVATIONSlaw.inventionlawFlaring activeVery high energiesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGAMMA-RAY BURSTS[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsSupernovaNeutrino detectorNeutrino astronomyFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesOptical telescopeTelescopeMuon tracksCoincidentSEARCHDetection methods0103 physical sciencesCore collapse supernovae010306 general physicsOptical follow-upInstrumentation and Methods for Astrophysics (astro-ph.IM)Neutronsantares; neutrino astronomy; optical follow-up; transient sourcesANTARES010308 nuclear & particles physicsGamma raysAstronomyAstronomy and AstrophysicsAlert systemsStarsTransient sources[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Optical signalsPotential sources13. Climate actionFISICA APLICADAHigh Energy Physics::ExperimentNeutrino astronomyGamma-ray burst
researchProduct

A method for detection of muon induced electromagnetic showers with the ANTARES detector

2012

The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earths atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated. © 2012 Elsevier B.V. All rights reserved.

Physics::Instrumentation and DetectorsAtmospheric muonsDecay productsNeutrino telescopeElectromagnetic shower identification01 natural sciences7. Clean energyneutrino telescope electromagnetic shower identification high energy muons energy reconstruction; high energy muons; neutrino telescope; electromagnetic shower identification; energy reconstructionMuon neutrinoNEUTRINO TELESCOPE010303 astronomy & astrophysicsInstrumentationEnergy reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsHigh energy muonNeutrino detectorMuon colliderNeutrino astronomyFísica nuclearNeutrinoNeutrino telescope; Energy reconstruction; High energy muonsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUXNuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Charged current[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayMuon neutrinoNuclear physicsElectromagnetism0103 physical sciencesHigh energy physicsneutrino telescope electromagnetic shower identification high energy muons energy reconstructionInstrumentation and Methods for Astrophysics (astro-ph.IM)MuonANTARES010308 nuclear & particles physicsCharged particles[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]FISICA APLICADATEVPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrino astronomyNeutrino telescopesElectro-magnetic showersHigh energy muons
researchProduct

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

2010

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAtmospheric muonsFOS: Physical sciencesLINECosmic rayPotassium-4001 natural sciencesParticle detectorNuclear physicsPOTASSIUM-40NEUTRINO TELESCOPESatmospheric muons; depth intensity relation; potassium-400103 physical sciencesDepth intensity relation14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPotassium-40DetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsPERFORMANCEDEPTH INTENSITY RELATIONLIGHTNeutrino detector13. Climate actionddc:540Física nuclearHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SYSTEMLepton
researchProduct

Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

2012

Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.

FLUXMuon backgroundParticle physicsGauge modelMagnetic monopolesAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleneutrino telescopes; antares; magnetic monopoleFOS: Physical sciencesCosmic ray01 natural sciencesNuclear physics0103 physical sciencesNeutronFIELD010306 general physicsDETECTORCherenkov radiationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)NeutronsPhysicsSPECTRUMAtmospheric neutrinosMagnetic monopoleANTARES:Física::Acústica [Àrees temàtiques de la UPC]MuonCharged particles010308 nuclear & particles physicsAstronomy and AstrophysicsMonopols magnèticsUpper limitsNeutrino detectorMass scaleFISICA APLICADA[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Física nuclearData setsNeutrino telescopes[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)TelescopesAstroparticle Physics
researchProduct