0000000000272709
AUTHOR
Giuseppe Augello
RELAXATION PHENOMENA IN CLASSICAL AND QUANTUM SYSTEMS
Relaxation phenomena in three different classical and quantum systems are investigated. First, the role of multiplicative and additive noise in a classical metastable system is analyzed. The mean lifetime of the metastable state shows a nonmonotonicbehavior with a maximum as a function of both the additive and multiplicative noise intensities. In the second system, the simultaneous action of thermal and non-Gaussian noise on the dynamics of an overdamped point Josephson junction is studied. The effect of a Lévy noise generated by a Cauchy–Lorentz distribution on the mean lifetime of the superconductive metastable state, in the presence of a periodic driving, is investigated. We find resonan…
EFFECTS OF COLORED NOISE IN SHORT OVERDAMPED JOSEPHSON JUNCTION
We investigate the transient dynamics of a short overdamped Josephson junction with a periodic driving signal in the presence of colored noise. We analyze noise induced henomena, specifically resonant activation and noise enhanced stability. We find that the positions both of the minimum of RA and maximum of NES depend on the value of the noise correlation time tau_c. Moreover, in the range where RA is observed, we find a non-monotonic behavior of the mean switching time as a function of the correlation time tau_c.