0000000000274108
AUTHOR
Johan Bobacka
All-Solid-State Ag+-ISE Based on [2.2.2]p,p,p-Cyclophane
All-solid-state ion-selective electrodes (ISEs) based on two ionophores with similar structure, i.e., [2.2.2] p,p,p-cyclophane and [2.2.2]m,p,p-cyclophane, were prepared and investigated. The ion-selective membranes were composed of the corresponding ionophore (1 %), potassium tetrakis(4-chlorophenyl)borate (0.5 %), 2-nitrophenyl octyl ether (65–66 %), and PVC (33 %). The ion-selective membrane was placed on top of a layer of the conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), working as ion-to-electron transducer. The resulting all-solid-state ISEs were conditioned in 0.01 M AgNO3 and investigated as Ag+-ISEs. The results show that [2.2.2] p,p,p-cyclophane is much more select…
Synthesis, characterization, and complexation of tetraarylborates with aromatic cations and their use in chemical sensors.
Five aromatic borate anions, namely tetrakis(4-phenoxyphenyl)borate (1), tetrakis(biphenyl)borate (2), tetrakis(2-naphthyl)borate (3), tetrakis(4-phenylphenol)borate (4), and tetrakis(4-phenoxy)borate (5), have been prepared and tested as ion-recognition sites in chemical sensors for certain aromatic cations and metal ions. To gain further insight into the complexation of the cations, some complexes have been prepared and structurally characterized. The complexation behavior of 1 and 2 towards N-methylpyridinium (6), 1-ethyl-4-(methoxycarbonyl)pyridinium (7), tropylium (8), imidazolium (9), and 1-methylimidazolium (10) cations has been studied, and the stability constants of the complexes o…
Electrochemical and spectroscopic study on thiolation of polyaniline
Abstract Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopi…
Electropolymerization of N-methylanthranilic acid and spectroelectrochemical characterization of the formed film
Abstract The electropolymerization of N-methylanthranilic acid (NMAA) is reported in this paper. The monomer is substituted both at ortho- and N-position and, to the best of our knowledge, it has not been previously electropolymerized. Electropolymerization of NMAA was done on glassy carbon and optically transparent (indium) tin oxide electrodes. The obtained films, which are probably of an oligomeric nature (oligoNMMA), were characterized with cyclic voltammetry (CV), in situ UV–vis and Raman spectroscopy, ex situ FTIR spectroscopy and scanning electron microscopy (SEM). Our results show that NMAA can be electropolymerized as thin films in 1.0 M HClO4, but the oxidation and reduction peak …
Silver Ion-Selective Electrodes Based on π-Coordinating Ionophores Without Heteroatoms
Ion-selective electrodes (ISEs) were constructed by using spherical hydrocarbons (cyclophanes) as π-coordinating ionophores in solvent polymeric membranes. Four structurally similar cyclophanes, i. e., [2.2.2]p,p,p-cyclophane, [2.2.2]m,p,p-cyclophane, [2.2.1]p,p,p-cyclophane and [2.2.1]m,p,p-cyclophane were studied as ionophores for Ag+. The ion-selective membranes were composed of the corresponding ionophore (1%), potassium tetrakis(4-chlorophenyl)borate (0.5%), 2-nitrophenyl octyl ether (65–66%) and PVC (32–33%). The ion-selective membrane was placed on top of a layer of the conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), working as ion-to-electron transducer. The selectivit…