0000000000275341

AUTHOR

D. Peshekhonov

Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries

We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range $0.003$1 GeV$^2$. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at $Q^2$=10 GeV$^2$. The polarised $u$ valence quark distribution, $\Delta u_v(x)$, is positive and the polarisation increases with $x$. The polarised $d$ valence quark distribution, $\De…

research product

Spin asymmetries for events with highpThadrons in DIS and an evaluation of the gluon polarization

We present a measurement of the longitudinal spin cross section asymmetry for deep-inelastic muon-nucleon interactions with two high transverse momentum hadrons in the final state. Two methods of event classification are used to increase the contribution of the photon-gluon fusion process to above 30%. The most effective one, based on a neural network approach, provides the asymmetries A(p)lN(-->)lhhX=0.030+/-0.057(stat)+/-0.010(syst) and A(d)lN(-->)lhhX=0.070+/-0.076(stat)+/-0.010(syst). From these values we derive an averaged gluon polarization DeltaG/G=-0.20+/-0.28(stat)+/-0.10(syst) at an average fraction of nucleon momentum carried by gluons =0.07.

research product

A line-shape analysis for spin-1 NMR signals

An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could …

research product

Spin asymmetriesA1of the proton and the deuteron in the lowxand lowQ2region from polarized high energy muon scattering

We present the results of the spin asymmetries (Formula presented) of the proton and the deuteron in the kinematic region extending down to (Formula presented) and (Formula presented) The data were taken with a dedicated low x trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low x. The results complement our previous measurements and the two sets are consistent in the overlap region. No significant spin effects are found in the newly explored region. © 1999 The American Physical Society.

research product

Spin asymmetriesA1and structure functionsg1of the proton and the deuteron from polarized high energy muon scattering

We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100 GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.

research product

The spin-dependent structure function g1(x) of the proton from polarized deep-inelastic muon scattering

We present a new measurement of the virtual photon proton asymmetry $A_1^{\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\int_{0.003}^{0.7} g_{1}^{\rm p}(x){\rm d}x = 0.139 \pm 0.006~({\rm stat})\pm 0.008~({\rm syst)} \pm 0.006~({\rm evol})$. The value of the first moment $\Gamma_{1}^{\rm p} = \int_{0}^{1} g_{1}^{\rm p}(x){\rm d}x$ of $g_{1}^{\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\rm p}$ at low $x$. We find tha…

research product

A new measurement of the spin-dependent structure function $g_{1}(x)$ of the deuteron

Abstract We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 x 2 Q 2 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

research product

Measurement of the Spin Structure of the Deuteron in the DIS Region

We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 &lt; Q^2 &lt; 100 GeV^2 and 0.004&lt; x &lt;0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 &lt; x &lt; 0.03.

research product

Measurement of the Charged-Pion Polarizability

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^-\gamma\rightarrow \pi^-\gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}$, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2<0.0015$\,(GeV/$c$)$^2$. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3$ under the …

research product

Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

Abstract We present a determination of the gluon polarization Δ G / G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q 2 1 ( GeV / c ) 2 , with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6 LiD target. The helicity asymmetry for the selected events is 〈 A ∥ / D 〉 = 0.002 ± 0.019 ( stat ) ± 0.003 ( syst ) . From this value, we obtain in a leading-order QCD analysis Δ G / G = 0.024 ± 0.089 ( stat ) ± 0.057 ( syst ) at x g = 0.095 and μ 2 ≃ 3 ( GeV / c ) 2 .

research product

Measurement of the spin-dependent structure function g1(x) of the deuteron

We report on the first measurement of the spin-dependent structure function g1d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006&lt;x&lt;0.6, 1 GeV2&lt;Q2&lt;30 GeV2. The first moment, Γ1d=sh{phonetic}01 g1d dx=0.023±0.020 (stat.) ± 0.015 (syst.), is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g1p, we infer the first moment of the spin-dependent neutron structure function g1n. The difference Γ1p-Γ1n=0.20 ±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ1p-Γ1n=0.191 ±0.002.

research product

Measurement of proton and nitrogen polarization in ammonia and a test of equal spin temperature

The 1996 data taking of the SMC experiment used polarized protons to measure the spin-dependent structure function g(1) of the proton. Three liters of solid granular ammonia were irradiated at the Bonn electron linac in order to create the paramagnetic radicals which are needed for polarizing the protons. Proton polarizations of +/- (90 +/- 2.5)% were routinely reached. An analysis based on a theoretical line shape for spin-1. systems with large quadrupolar broadening was developed which allowed the nitrogen polarization in the ammonia to be determined with a 10% relative error. The measured quadrupolar coupling constant of N-14 agrees well with earlier extrapolated values. The polarization…

research product