0000000000275957

AUTHOR

Line Heylen

Transmission of arterial oxygen partial pressure oscillations to the cerebral microcirculation in a porcine model of acute lung injury caused by cyclic recruitment and derecruitment.

Cyclic recruitment and derecruitment (R/D) play a key role in the pathomechanism of acute lung injury (ALI) leading to respiration-dependent oscillations of arterial partial pressure of oxygen (Pa(O(2))). These Pa(O(2)) oscillations could also be forwarded to the cerebral microcirculation.In 12 pigs, partial pressure of oxygen was measured in the thoracic aorta (Pa(O(2))) and subcortical cerebral tissue (Pbr(O(2))). Cerebral cortical haemoglobin oxygen saturation (Sbr(O(2))), cerebral blood flow (CBF), and peripheral haemoglobin saturation (Sp(O(2))) were assessed by spectroscopy and laser Doppler flowmetry. Measurements at different fractions of inspired oxygen (F(I(O(2)))) were performed …

research product

PaO2oscillations caused by cyclic alveolar recruitment can be monitored in pig buccal mucosa microcirculation

BACKGROUND Cyclic alveolar recruitment and derecruitment play a role in the pathomechanism of acute lung injury and may lead to arterial partial pressure of oxygen (PaO(2) ) oscillations within the respiratory cycle. It remains unknown, however, if these PaO(2) oscillations are transmitted to the microcirculation. The present study investigates if PaO(2) oscillations can be detected in the pig buccal mucosa microcirculation. METHODS Respiratory failure was induced by surfactant depletion in seven pigs. PaO(2) oscillations caused by cyclic recruitment and derecruitment were measured in the thoracic aorta by fast fluorescence quenching of oxygen technology. Haemoglobin oxygen saturation, haem…

research product