0000000000276259

AUTHOR

Franck Hersant

showing 2 related works from this author

A KInetic Database for Astrochemistry (KIDA)

2012

We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense…

Astrochemistry[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Interstellar cloudFOS: Physical sciencesAstrophysicsKinetic energycomputer.software_genreAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesmiscellaneous [astrochemistry; astronomical databases]010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysics010304 chemical physicsDatabaseKinetic informationAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesInterstellar mediumSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)computerChemical databaseGalaxy Astrophysics
researchProduct

Oxygen depletion in dense molecular clouds: a clue to a low O2 abundance?

2011

Context: Dark cloud chemical models usually predict large amounts of O2, often above observational limits. Aims: We investigate the reason for this discrepancy from a theoretical point of view, inspired by the studies of Jenkins and Whittet on oxygen depletion. Methods: We use the gas-grain code Nautilus with an up-to-date gas-phase network to study the sensitivity of the molecular oxygen abundance to the oxygen elemental abundance. We use the rate coefficient for the reaction O + OH at 10 K recommended by the KIDA (KInetic Database for Astrochemistry) experts. Results: The updates of rate coefficients and branching ratios of the reactions of our gas-phase chemical network, especially N + C…

AstrochemistryChemical models[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Analytical chemistrychemistry.chemical_elementFOS: Physical sciencesAstrophysicsAstrophysicsKinetic energy01 natural sciencesOxygen[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesSolar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010304 chemical physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Molecular cloudAstronomy and Astrophysicsastrochemistry; ISM; abundances; ISM; molecules; ISM; individual objects; L134N; ISM; individual objects; TMC-1[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]NitrogenchemistryAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceMolecular oxygenChemical network
researchProduct