0000000000278296

AUTHOR

Hao Lu

0000-0002-7338-2295

Reversible Photochemical Control of Doping Levels in Supported Graphene

Controlling the type and density of charge carriers in graphene is vital for a wide range of applications of this material in electronics and optoelectronics. To date, chemical doping and electrostatic gating have served as the two most established means to manipulate the carrier density in graphene. Although highly effective, these two approaches require sophisticated graphene growth or complex device fabrication processes to achieve both the desired nature and the doping densities with generally limited dynamic tunability and spatial control. Here, we report a convenient and tunable optical approach to tune the steady-state carrier density and Fermi energy in graphene by photochemically c…

research product

Solvothermal Synthesis of Molybdenum–Tungsten Oxides and Their Application for Photoelectrochemical Water Splitting

Molybdenum and tungsten oxides are of interest as semiconductors for the production of clean and sustainable energy. Here we show that synergistic effects arising from a combination of noncrystalli...

research product

Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8-xW9+xO47 (0 <x <5)

Thermoelectric materials are believed to play a fundamental role in the energy field over the next years thanks to their ability of directly converting heat into usable electric energy. To increase their integration in the commercial markets, improvements of the efficiencies are needed. At the same time, cheap and non-toxic materials are required along with easily upscalable production cycles. Compounds of the tetragonal tungsten bronze (TTB) series Nb8-xW9+xO47 fulfill all these requirements and are promising materials. Their adaptive structure ensures glass-like values of the thermal conductivity, and the substitution on the cation side allows a controlled manipulation of the electronic p…

research product

Assembly of iron oxide nanosheets at the air-water interface by leucine-histidine peptides

The fabrication of inorganic nanomaterials is important for a wide range of disciplines. While many purely inorganic synthetic routes have enabled a manifold of nanostructures under well-controlled conditions, organisms have the ability to synthesize structures under ambient conditions. For example, magnetotactic bacteria, can synthesize tiny ‘compass needles’ of magnetite (Fe3O4). Here, we demonstrate the bio-inspired synthesis of extended, self-supporting, nanometer-thin sheets of iron oxide at the water–air interface through self-assembly using small histidine-rich peptides.

research product

Direct Metal‐Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Micro‐Supercapacitors with High Volumetric Capacitance

Direct, metal‐free synthesis of graphene films on insulating substrates in a controlled manner is of great importance for applications in (opto)electronic and energy storage devices. Graphene films are fabricated on fused silica substrates without metal catalyst via chemical vapor deposition (CVD), using propionic acid as a carbon source. Film‐thickness is readily adjustable between 5 and 45 nm by changing the deposition time and flow rate of the precursor, displaying sheet resistance in the range of 0.27–1.86 kΩ□−1. The resulting graphene films are directly integrated into micro‐supercapacitors without film transfer or liquid‐phase processing, and demonstrate ultrahigh operation rates up t…

research product

The surface chemistry of iron oxide nanocrystals: surface reduction of γ-Fe2O3 to Fe3O4 by redox-active catechol surface ligands

The effect of surface functionalization on the structural and magnetic properties of catechol-functionalized iron oxide magnetic (γ-Fe2O3) nanocrystals was investigated. γ-Fe2O3 nanocrystals (NCs) were synthesized from iron acetyl acetonate in phenyl ether with 1,2-tetradecanediol, oleic acid, and oleylamine. X-ray powder diffraction in combination with Mossbauer spectroscopy revealed the presence of γ-Fe2O3 (maghemite) particles only. Replacement of oleic acid (OA) with catechol-type 3,4-dihydroxyhydrocinnamic acid (DHCA) or polydentate polydopamine acrylate (PDAm) surface ligands leads to a pronounced change of the magnetic behavior of the γ-Fe2O3 nanocrystals and separated them into two …

research product

Humidity-Induced Grain Boundaries in MAPbI3 Perovskite Films

Methylammonium lead halide perovskites (MAPbI3) are very sensitive to humid environments. We performed in situ scanning force microscopy and in situ X-ray diffraction measurements on MAPbI3 films to track changes in the film morphology and crystal structure upon repeated exposure to a high relative humidity environment (80%). We found that the appearance of monohydrate (MAPbI3·H2O) Bragg reflections coincided with the appearance of additional grain boundaries. Prolonging the exposure time to humidity induced more grain boundaries and steps in the MAPbI3 films, and the peak intensities of the monohydrate MAPbI3·H2O increased. The monohydrate was not stable under dry atmosphere and could be r…

research product

Cover Picture: Direct Metal‐Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Micro‐Supercapacitors with High Volumetric Capacitance (Batteries & Supercaps 11/2019)

research product

Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration

Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different …

research product

Peptide-Controlled Assembly of Macroscopic Calcium Oxalate Nanosheets

The fabrication of two-dimensional (2D) biomineral nanosheets is of high interest owing to their promise for applications in electronics, filtration, catalysis, and chemical sensing. Using a facile approach inspired by biomineralization in nature, we fabricate laterally macroscopic calcium oxalate nanosheets using β-folded peptides. The template peptides are composed of repetitive glutamic acid and leucine amino acids, self-organized at the air-water interface. Surface-specific sum frequency generation spectroscopy and molecular dynamics simulations reveal that the formation of oxalate nanosheets relies on the peptide-Ca 2+ ion interaction at the interface, which not only restructures the …

research product

Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer

Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisor…

research product

CCDC 1521825: Experimental Crystal Structure Determination

Related Article: Zongping Chen, Wen Zhang, Carlos-Andres Palma, Alberto Lodi Rizzini, Bilu Liu, Ahmad Abbas, Nils Richter, Leonardo Martini, Xiao-Ye Wang, Nicola Cavani, Hao Lu, Neeraj Mishra, Camilla Coletti, Reinhard Berger, Florian Klappenberger, Mathias Kläui, Andrea Candini, Marco Affronte, Chongwu Zhou, Valentina De Renzi, Umberto del Pennino, Johannes V. Barth, Hans Joachim Räder, Akimitsu Narita, Xinliang Feng, and Klaus Müllen|2016|J.Am.Chem.Soc.|138|15488|doi:10.1021/jacs.6b10374

research product