0000000000279585

AUTHOR

Lucie Léonard

Lactic acid bacteria strains for bioprotection application with cells entrapment in biopolymeric matrices

Among the various methods to control foodborne pathogenic and/or food spoilage microorganisms in food chain, bioprotective lactic acid bacteria (LAB) appear to be promising tools for food biopreservation. This collaborative study, between PAPC (Agrosup Dijon, University of Burgundy) and BioDyMIA (University Lyon1-Lyon Isara) laboratories, concerned the development of sodium alginate/sodium caseinate polymeric matrices intended to entrap LAB cells selected for their anti-Listeria spp. activity. First, 4 LAB strains from 19 LAB strains were selected for their anti-Listeria spp. activity: this screening was performed by the method of agar diffusion against three Listeria spp strains. Then, ant…

research product

Aqueous two-phase system cold-set gelation using natural and recombinant probiotic lactic acid bacteria as a gelling agent

The present study aimed to entrap probiotic lactic acid bacteria (LAB) in a sodium alginate and sodium caseinate aqueous two-phase gel system. The natural acidifying properties of two therapeutic probiotic LAB were exploited to liberate calcium ions progressively from calcium carbonate (CaCO3), which caused the gelation of the co-existing phases. Bi-biopolymeric matrix gelation of GDL/CaCO3 or LAB/CaCO3 was monitored by dynamic rheological measurements, and the final gels were characterized by frequency dependence measurements and confocal laser scanning microscopy. Weak to strong gels were formed with an elastic modulus G' from 10 to 1.000Pa, respectively. After cold-set gelation of our sy…

research product

Design of biopolymeric matrices entrapping bioprotective lactic acid bacteria to control Listeria monocytogenes growth: Comparison of alginate and alginate-caseinate matrices entrapping Lactococcus lactis subsp. lactis cells

In order to design biopolymeric matrices entrapping bioprotective lactic acid bacteria (LAB) to control undesirable microorganisms growth in foods, the performances of alginate and alginate-caseinate (an aqueous two-phase system) matrices entrapping Lactococcus lactis subsp. lactis LAB3 cells were compared. Since efficient matrices should preserve the culturability and the antimicrobial activity of entrapped LAB3 cells for prolonged periods, they were both monitored for 12 days storage at 30 °C. Maximal cell density (∼109 CFU mL−1) was reached after 24 h whatever the matrix type. Then, the LAB3 cells population decreased: 107 and 106 CFU mL−1 were enumerated after 12 days in alginate-casein…

research product

Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

International audience; This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH = 7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH = 7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of …

research product

Preservation of viability and anti-Listeria activity of lactic acid bacteria, Lactococcus lactis and Lactobacillus paracasei, entrapped in gelling matrices of alginate or alginate/caseinate

In order to control undesirable microorganisms growth in foods, the performance of alginate and alginate-caseinate (an aqueous two-phase system) matrices entrapping lactic acid bacteria (LAB) (Lactobacillus paracasei LAB1 and Lactococcus lactis LAB3) was investigated. Polymeric matrices were initially loaded with Lcells at similar to 10(8-10) or similar to 10(4-6) CFU mL(-1), and were monitored, in liquid and gelled form (beads), for 12 days at 30 degrees C. In the liquid form, maximum cell density (similar to 10(9) CFU mL(-1)) was reached after 24 h whatever the matrix. Then, the Lpopulation decreased but remained higher in alginate-caseinate matrices: 10(7) and 10(6) CFU mL(-1) of LAB3 ce…

research product