0000000000280069
AUTHOR
Jeannette Geschwind
From CO2 -Based Multifunctional Polycarbonates With a Controlled Number of Functional Groups to Graft Polymers
Stable, hydroxyl functional polycarbonates with glycerol side chains synthesized from CO(2) and isopropylidene(glyceryl glycidyl ether).
A series of functional polycarbonates, poly((isopropylidene glyceryl glycidyl ether)-co-(glycidyl methyl ether) carbonate) (P((IGG-co-GME) C)) random copolymers with different fractions of 1,2-isopropylidene glyceryl glycidyl ether (IGG) units, is synthesized. After acidic hydrolysis of the acetal protecting groups, a new type of functional polycarbonate prepared directly from CO(2) and glycerol is obtained, namely poly((glyceryl glycerol)-co-(glycidyl methyl ether) carbonate) (P((GG-co-GME) C)). All hydroxyl functional samples exhibit monomodal molecular weight distributions with PDIs between 2.5 and 3.3 and M(n) between 12 000 and 25 000 g mol(-1) . Thermal properties reflect the amorphou…
Poly(1,2-glycerol carbonate): A Fundamental Polymer Structure Synthesized from CO2 and Glycidyl Ethers
The functional, aliphatic poly(1,2-glycerol carbonate) as a fundamental, simple polymer structure based on glycerol and CO2 was prepared by combination of glycidyl ether monomers with carbon dioxide via two different approaches. The material was obtained by two-step procedures either via copolymerization of (i) ethoxy ethyl glycidyl ether (EEGE) or (ii) benzyl glycidyl ether (BGE) with CO2, followed by removal of the respective protecting groups via acidic cleavage for (i) and hydrogenation for (ii). The resulting protected polycarbonate structures and the targeted poly(1,2-glycerol carbonate) were investigated with 1H NMR and 13C NMR spectroscopy as well as 2D-NMR methods. Removal of both …