0000000000280170

AUTHOR

Yutaka Yoshida

showing 2 related works from this author

Origin of the fast magnetization relaxation at low temperatures in HTS with strong pinning

2010

The temperature T variation of the normalized magnetization relaxation rate S in high-temperature superconductors (HTS) with strong vortex pinning exhibits a maximum in the low-T range. This was reported for various HTS, and the origin of the faster relaxation at low T appearing in standard magnetization relaxation measurements was usually related to specific pinning properties of the investigated specimens. Since the observed behaviour seems to be characteristic to all HTS with enhanced pinning (generated by random and/or correlated disorder), we show that the S(T) maximum can be explained in terms of classic collective vortex creep. The influence of thermo-magnetic instabilities in the lo…

SuperconductivityMaterials scienceFlux pinningCondensed matter physicsRelaxation (NMR)Energy Engineering and Power TechnologyCondensed Matter PhysicsInstabilityElectronic Optical and Magnetic MaterialsVortexMagnetizationCreepCondensed Matter::SuperconductivityElectrical and Electronic EngineeringPinning forcePhysica C: Superconductivity and its Applications
researchProduct

Magnetization relaxation in YBCO films with improved supercurrent transport properties

2010

The relaxation of the irreversible magnetization in optimally doped YBCO films with natural and artificial pinning centres was measured in zero-field cooling conditions using SQUID magnetometry. The external magnetic field H was oriented along the c axis. An appropriate method for the determination of the characteristic vortex pinning energy from the normalized vortex-creep activation energy is discussed. This is based on the existence of a crossover elastic (collective) vortex creep at low temperatures T – plastic vortex creep at high T, caused by the T dependent macroscopic currents induced in the sample during magnetization measurements.

HistoryMaterials scienceCondensed matter physicsMagnetometerRelaxation (NMR)Computer Science ApplicationsEducationMagnetic fieldlaw.inventionVortexSQUIDMagnetizationCreeplawCondensed Matter::SuperconductivityPinning forceJournal of Physics: Conference Series
researchProduct