0000000000280282

AUTHOR

S. T. Ohlmann

showing 2 related works from this author

Discovery of an Exceptionally Strong β -Decay Transition of F20 and Implications for the Fate of Intermediate-Mass Stars

2019

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupte…

PhysicsSolar massThermonuclear fusionElectron captureDegenerate energy levelsGeneral Physics and AstronomyAstrophysics01 natural sciencesStarsNeutron starSupernovaOrders of magnitude (time)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsPhysical Review Letters
researchProduct

Discovery of an Exceptionally Strong β -Decay Transition of $^{20}$F and Implications for the Fate of Intermediate-Mass Stars

2019

A significant fraction of stars between 7-11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on $^{20}$Ne in the degenerate oxygen-neon stellar core. However, due to the unknown strength of the transition between the ground states of $^{20}$Ne and $^{20}$F, it has not previously been possible to fully constrain the rate. By measuring the transition, we have established that its strength is exceptionally large and enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupted b…

tähdetAstrophysics - Solar and Stellar AstrophysicsNuclear TheoryastrofysiikkaAstrophysics::Solar and Stellar Astrophysicsddc:530ydinfysiikkaAstrophysics - High Energy Astrophysical PhenomenaNuclear Experiment
researchProduct