0000000000281444

AUTHOR

J.k.p. Lee

Large Odd-even Radius Staggering In The Very Light Platinum Isotopes From Laser Spectroscopy

Laser spectroscopy measurements have been carried out on very-neutron-deficient platinum isotopes with the COMPLIS experimental setup. Using the ${5d}^{9}{6s}^{3}{D}_{3}\ensuremath{\rightarrow}{5d}^{9}{6p}^{3}{P}_{2}$ optical transition, hyperfine spectra of ${}^{182,181,180,179,178}\mathrm{Pt}$ and ${}^{183}{\mathrm{Pt}}^{m}$ were recorded for the first time. The variation of the mean square charge radius between these nuclei, the magnetic moments of the odd isotopes, and the quadrupole moment of ${}^{183}{\mathrm{Pt}}^{m}$ were thus measured. A large deformation change between ${}^{183}{\mathrm{Pt}}^{g}$ and ${}^{183}{\mathrm{Pt}}^{m},$ an odd-even staggering of the charge radius, and a d…

research product

Charge radius changes of even-even neutron-rich Tellurium isotopes

Laser spectroscopy based on resonant ionization of laser-desorbed atoms has been used to study the neutron-rich tellurium isotopes with the COMPLIS facility at ISOLDE-CERN. The isotope shift and the hyperfine structure of several neutron-rich Te isotopes: $^{120–136}$Te and $^{123m–133m}$Te have been measured. From the hyperfine structure and the isotope shift we can extract the magnetic and quadrupole moments and the change in the mean square charge radius respectively. The mean square charge radii of the even-even isotopes have been deduced and their comparison with the known data for the other elements near Z=50 is presented. The experimental $\delta$ is compared with that obtained from …

research product

Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius ofSn132

Laser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the $5{s}^{2}5{p}^{2\phantom{\rule{0.3em}{0ex}}3}{P}_{0}\ensuremath{\rightarrow}5{s}^{2}5p6s\phantom{\rule{0.3em}{0ex}}{}^{3}{P}_{1}$ optical transition, hyperfine spectra of $^{126\ensuremath{-}132}\mathrm{Sn}$ and $^{125,127,129\ensuremath{-}131}\mathrm{Sn}{}^{m}$ were recorded for the first time. The nuclear moments and the mean square charge radius variation ($\ensuremath{\delta}\ensuremath{\langle}{r}_{c}^{2}\ensuremath{\rangle}$) were extracted. From the quadrupole moment values, these nuclei appear to be spherical. The magnetic moments measured are thus co…

research product

Nuclear Moments and Deformation Change inA184ug,mfrom Laser Spectroscopy

Resonance ionization spectroscopy (RIS) was performed on desorbed Au, and the complete hyperfine spectrum of both isomeric and ground states of the short lived 184Au nucleus has been recorded from the 5d106s S1y2 ! 5d106p P3y2 optical transition. The nuclear moments of both states and the mean square charge radius changes were measured. The magnetic moments were determined to be m 184g I­5 ­ 12.07s2dmN and m I­2 ­ 11.44s2dmN and the spectroscopic quadrupole moments to be Q 184g s ­ 14.65s26db and Q184m s ­ 11.90s16d b. A difference in the mean square charge radius dkr2 c l184g,184m ­ 20.036s3d fm2 was found. [S0031-9007(97)03992-6]

research product

Charge radius change in the heavy tin isotopes until A = 132 from laser spectroscopy

Laser spectroscopy measurements have been carried out on the very neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s 25p 23P 0 → 5s 25p6s 3P 1 optical transition, hyperfine spectra of 126-132Sn and 125m, 127m, 129m-131mSn where recorded for the first time. The variation of the mean-square charge radius ( δ〈r 2〉) between these nuclei and nuclear moments of the isomers and the odd isotopes were thus measured. An odd-even staggering which inverts at A = 130 is clearly observed. This indicates a small appearance of a plateau on the δ〈r 2〉 which has to be confirmed by measuring the isotope shift beyond A = 132.

research product

An ion guide for the production of a low energy ion beam of daughter products of α-emitters

A new ion guide has been modeled and tested for the production of a low energy ($\approx$ 40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the $\alpha$-decay of a $^{233}$U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of $^{229}$Th$^{+}$ (0.06%), $^{221}$Fr$^{+}$ (6%), and $^{217}$At$^{+}$ (6%) beams have been measured. A detailed study of the electric field and …

research product