0000000000281511

AUTHOR

Francisco Ivars-barceló

0000-0002-5896-7623

showing 3 related works from this author

Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogen…

2017

Abstract A set of vanadium phosphorous oxide (VPO) catalysts, mainly consisting of (VO) 2 P 2 O 7 , VO(PO 3 ) 2 or VOPO 4 ·2H 2 O bulk crystalline phases, has been investigated for the oxidative dehydrogenation (ODH) of ethane to ethylene, a key potential reaction for a sustainable industrial and socioeconomic development. The catalytic performance on these VPO catalysts has been explained on the basis of the main crystalline phases and the corresponding surface features found by XPS and LEISS at 400 °C, i.e. within the temperature range used for ODH reaction. The catalysts based on (VO) 2 P 2 O 7 phase presented the highest catalytic activity and productivity to ethylene. Nevertheless, the…

Ethylene010405 organic chemistryInorganic chemistryOxideVanadiumchemistry.chemical_element010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryLow-energy ion scatteringOxidation stateDehydrogenationPhysical and Theoretical ChemistrySelectivity
researchProduct

Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-T…

2021

9 figures, 2 tables.

inorganic chemicalsTechnologyInorganic chemistryTotal oxidationcobalt oxidechemistry.chemical_elementalkane oxidationpropaneHeterogeneous catalysissurface oxygen vacanciesMethaneArticleCatalysischemistry.chemical_compoundPropaneAlkane oxidationSurface oxygen vacanciesPropanetotal oxidationvolatile organic compoundsGeneral Materials ScienceReactivity (chemistry)Volatile organic compoundsCobalt oxideAlkanechemistry.chemical_classificationHeterogeneous catalysisEthaneMicroscopyQC120-168.85methaneTQH201-278.5ethaneEngineering (General). Civil engineering (General)TK1-9971heterogeneous catalysischemistryDescriptive and experimental mechanicsMixed oxideElectrical engineering. Electronics. Nuclear engineeringTA1-2040cobalt oxide; total oxidation; alkane oxidation; heterogeneous catalysis; volatile organic compounds; propane; ethane; methane; surface oxygen vacanciesCobaltMethaneMaterials; Volume 14; Issue 23; Pages: 7120
researchProduct

(Ag)Pd-Fe3O4 Nanocomposites as Novel Catalysts for Methane Partial Oxidation at Low Temperature

2020

Nanostructured composite materials based on noble mono-(Pd) or bi-metallic (Ag/Pd) particles supported on mixed iron oxides (II/III) with bulk magnetite structure (Fe3O4) have been developed in order to assess their potential for heterogeneous catalysis applications in methane partial oxidation. Advancing the direct transformation of methane into value-added chemicals is consensually accepted as the key to ensuring sustainable development in the forthcoming future. On the one hand, nanosized Fe3O4 particles with spherical morphology were synthesized by an aqueous-based reflux method employing different Fe (II)/Fe (III) molar ratios (2 or 4) and reflux temperatures (80, 95 or 110 &deg

Materials scienceoxidation catalysisXRDGeneral Chemical EngineeringNanoparticleAgHeterogeneous catalysisArticleCatalysisFe<sub>3</sub>O<sub>4</sub>EDSReaction ratelcsh:Chemistrymagnetite iron oxidePdGeneral Materials SciencesilverPartial oxidationBimetallic stripRamanTG in airlow-temperature activityNanocompositenanocompositeelectron microscopymethaneFe3O4palladiumTG in hydrogenThermogravimetryheterogeneous catalysislcsh:QD1-999formaldehydeNuclear chemistryNanomaterials
researchProduct