0000000000281567

AUTHOR

Andrei Derevianko

Stochastic fluctuations of bosonic dark matter

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

research product

Atomic Ionization by Scalar Dark Matter and Solar Scalars

We calculate the cross-sections of atomic ionization by absorption of scalar particles in the energy range from a few eV to 100 keV. We consider both nonrelativistic particles (dark matter candidates) and relativistic particles which may be produced inside Sun. We provide numerical results for atoms relevant for direct dark matter searches (O, Na, Ar, Ca, Ge, I, Xe, W and Tl). We identify a crucial flaw in previous calculations and show that they overestimated the ionization cross sections by several orders of magnitude due to violation of the orthogonality of the bound and continuum electron wave functions. Using our computed cross-sections, we interpret the recent data from the Xenon1T ex…

research product

Quantum sensor networks as exotic field telescopes for multi-messenger astronomy

Multi-messenger astronomy, the coordinated observation of different classes of signals originating from the same astrophysical event, provides a wealth of information about astrophysical processes with far-reaching implications. So far, the focus of multi-messenger astronomy has been the search for conventional signals from known fundamental forces and standard model particles, like gravitational waves (GW). In addition to these known effects, quantum sensor networks could be used to search for astrophysical signals predicted by beyond-standard-model (BSM) theories. Exotic bosonic fields are ubiquitous features of BSM theories and appear while seeking to understand the nature of dark matter…

research product

Search for New Physics with Atoms and Molecules

This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.

research product

Atomic physics studies at the gamma factory at CERN

The Gamma Factory initiative proposes to develop novel research tools at CERN by producing, accelerating and storing highly relativistic, partially stripped ion beams in the SPS and LHC storage rings. By exciting the electronic degrees of freedom of the stored ions with lasers, high-energy narrow-band photon beams will be produced by properly collimating the secondary radiation that is peaked in the direction of ions' propagation. Their intensities, up to $10^{17}$ photons per second, will be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting $\gamma$--ray energy domain reaching up to 400 MeV. This article reviews opportuni…

research product

Search for topological defect dark matter with a global network of optical magnetometers

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

research product