0000000000281672

AUTHOR

Juan González-meneses

0000-0002-2520-2755

showing 2 related works from this author

Vassiliev invariants for braids on surfaces

2000

We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface.

Surface (mathematics)Fundamental groupLow-dimensional topologyGeneral MathematicsBraid groupGroup Theory (math.GR)braidMathematics::Algebraic TopologyCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Category TheoryMathematics::Quantum Algebra20F36 (Primary) 57M2757N05 (Secondary)BraidFOS: MathematicssurfaceMathematicsApplied MathematicsGeometric Topology (math.GT)Mathematics::Geometric TopologyFinite type invariantVassiliev Invariantfinite type invariantIsomorphismMathematics - Group TheoryGroup theory
researchProduct

Conjugacy problem for braid groups and Garside groups

2003

We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).

Conjugacy problemBraid group20F36Geometric topologyGarside groupsGroup Theory (math.GR)0102 computer and information sciencesAlgebraic topology01 natural sciencesTorus knotCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Quantum AlgebraFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematics20F36; 20F10MathematicsSmall Gaussian groupsAlgebra and Number Theory010102 general mathematicsConjugacy problemBraid groupsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyArtin groups010201 computation theory & mathematicsArtin group20F10Mathematics - Group TheoryGroup theory
researchProduct