0000000000282018
AUTHOR
Cristian Javier Antonelli
Interspecific hybridization improves the performance of Lotus spp. under saline stress
Abstract Salinity is one of the most frequent limiting conditions in pasture production for grazing livestock. Legumes, such as Lotus spp. with high forage quality and capable of adapting to different environments, improves pasture performance in restrictive areas. In order to determine potential cultivars with better forage traits, the current study assess the response to salt stress of L. tenuis, L. corniculatus and a novel L. tenuis x L. corniculatus accession. For this purpose, chlorophyll fluorescence, biomass production, ion accumulation and anthocyanins and proanthocyanidins levels have been evaluated in control and salt-treated plants PSII activity was affected by salt in L. tenuis,…
Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization.
The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studieswhere plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information availableregarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-termalkaline stress.Lotus japonicusis a model legume broadly used to study many important physiological processes includingbiotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response toalkaline stress of the most widely usedL. japonicusecotypes, Gifu B-129 and MG-20, and analyzed global t…
Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions
Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…