Eventually periodic solutions of single neuron model
In this paper, we consider a nonautonomous piecewise linear difference equation that describes a discrete version of a single neuron model with a periodic (period two and period three) internal decay rate. We investigated the periodic behavior of solutions relative to the periodic internal decay rate in our previous papers. Our goal is to prove that this model contains a large quantity of initial conditions that generate eventually periodic solutions. We will show that only periodic solutions and eventually periodic solutions exist in several cases.
Periodic orbits of a neuron model with periodic internal decay rate
In this paper we will study a non-autonomous piecewise linear difference equation which describes a discrete version of a single neuron model with a periodic internal decay rate. We will investigate the periodic behavior of solutions relative to the periodic internal decay rate. Furthermore, we will show that only periodic orbits of even periods can exist and show their stability character.