Triplet stabilization for enhanced drug photorelease from sunscreen-based photocages
[EN] Recently, sunscreen-based drug photocages have been introduced to provide UV protection to photoactive drugs, thus increasing their photosafety. Here, combined experimental and theoretical studies performed on a photocage based on the commercial UVA filter avobenzone (AB) and on the photosensitizing non-steroidal anti-inflammatory drug ketoprofen (KP) are presented unveiling the photophysical processes responsible for the light-triggered release. Particular attention is paid to solvent stabilization of the drug and UV filter excited states, respectively, which leads to a switching between the triplet excited state energies of the AB and KP units. Most notably, we show that the stabiliz…
Theoretical Study on the Photo-Oxidation and Photoreduction of an Azetidine Derivative as a Model of DNA Repair
Photocycloreversion plays a central role in the study of the repair of DNA lesions, reverting them into the original pyrimidine nucleobases. Particularly, among the proposed mechanisms for the repair of DNA (6-4) photoproducts by photolyases, it has been suggested that it takes place through an intermediate characterized by a four-membered heterocyclic oxetane or azetidine ring, whose opening requires the reduction of the fused nucleobases. The specific role of this electron transfer step and its impact on the ring opening energetics remain to be understood. These processes are studied herein by means of quantum-chemical calculations on the two azetidine stereoisomers obtained from photocyc…
Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates.
[EN] Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidatively generated lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer th…
Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates
[EN] The propensity of 5-formyluracil and 5-formylcytosine, i.e. oxidative lesions and epigenetic intermediates, in acting as intrinsic DNA photosensitizers is unraveled by using a combination of molecular modeling, simulation and spectroscopy. Exploration of potential energy surfaces and non-adiabatic dynamics confirm a higher intersystem crossing rate for 5-formyluracil, whereas the kinetic models evidence different equilibria in the excited states for both compounds.
Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer.
[EN] Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZT(m)), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated throug…
A Combined Experimental and Theoretical Approach to the Photogeneration of 5,6-Dihydropyrimidin-5-yl Radicals in Nonaqueous Media
The chemical fate of radical intermediates is relevant to understand the biological effects of radiation and to explain formation of DNA lesions. A direct approach to selectively generate the putative reactive intermediates is based on the irradiation of photolabile precursors. But, to date, radical formation and reactivity have only been studied in aqueous media, which do not completely mimic the micro environment provided by the DNA structure and its complexes with proteins. Thus, it is also important to evaluate the photogeneration of nucleoside-based radicals in nonaqueous media. The attention here is focused on the independent generation of 5,6-dihydropyrimidin-5-yl radicals in organic…
CCDC 1444537: Experimental Crystal Structure Determination
Related Article: Isabel Aparici-Espert, Antonio Francés-Monerris, Gemma M. Rodríguez-Muñiz, Daniel Roca-Sanjuán, Virginie Lhiaubet-Vallet, Miguel A. Miranda|2016|J.Org.Chem.|81|4031|doi:10.1021/acs.joc.6b00314