0000000000283398

AUTHOR

M. L. Conciatore

Swift GRBs: The early afterglow spectral energy distribution

We present the first results of a program to systematically study the optical-to-X-ray spectral energy distribution (SED) of Swift GRB afterglows with known redshift. The goal is to study the properties of the GRB explosion and of the intervening absorbing material. In this report we present the preliminary analysis on 23 afterglows. Thanks to Swift, we could build the SED at early times after the GRB (minutes to hours). We derived the Hydrogen column densities and the spectral slopes from the X-ray spectrum. We then constrained the visual extinction by requiring that the combined optical/X-ray SED is due to synchrotron, namely either a single power law or a broken power law with a slope ch…

research product

GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang

We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050…

research product