0000000000285968
AUTHOR
Bonan Li
Polyoxometalate-based metal-organic frameworks for boosting electrochemical capacitor performance
Abstract Polyoxometalate-based metal-organic frameworks (POMOFs) possess promising applications as capacitors. Herein, we report the syntheses, structures and electrochemical properties of five copper-containing POMOFs: [CuI4H2(btx)5(PW12O40)2]·2H2O (1), [CuIICuI3(H2O)2(btx)5(PWVI10WV2O40)]·2H2O (2), [CuI6(btx)6(PWVI9WV3O40)]·2H2O (3), [CuI4H2(btx)5(PMo12O40)2]·2H2O (4) and [CuIICuI3(btx)5(SiMoVI11MoVO40)]·4H2O (5) (btx = 1,4-bis(triazol-1-ylmethyl) benzene) with potential applications as capacitors. Compounds 1–3 contain the same Keggin-type polyoxometalate (POM) although with different oxidation states, allowing the analysis of the effect of the electronic population on the capacitance pe…
Two Novel Polyoxometalate-Encapsulated Metal–Organic Nanotube Frameworks as Stable and Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction
Two novel polyoxometalate (POM)-encapsulated metal–organic nanotube (MONT) framework crystalline materials with unprecedented copper-mixed ligands, HUST-200 and HUST-201, have been successfully synthesized by an effective synthesis strategy. The encapsulation not only provides a shield to increase the chemical stability, but also does not affect its catalytic activity, and, therefore, the crystalline materials are very active for HER (H+ can diffuse easily through the pores of the MONTs). Remarkably, HUST-200 displays a low overpotential of 131 mV (catalytic current density is equal to 10 mA·cm–2). This work thus offers a new way for devising HER electrocatalysts with low cost using POM-enc…