0000000000286455

AUTHOR

Colin A. Johnson

0000-0002-2979-8234

CiliaCarta: An integrated and validated compendium of ciliary genes

The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse…

research product

A high-throughput genome-wide siRNA screen for ciliogenesis identifies new ciliary functional components and ciliopathy genes.

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe the first whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource for investigation and interventions into the processes that are critical for the ciliary system. In total, we identified 83 candidate ciliogenesis and ciliopathy genes, including 15 components of the ubiquitin-proteasome system. The validated hits also include 12 encoding G-protein-coupled receptors, and three encoding pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. Com…

research product

De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387)(1-3). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 313 (GSK-3 beta)(4). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3 beta activity(4), and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND…

research product

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

Item does not contain fulltext Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequen…

research product

SYSCILIA, “A systems biology approach to dissect cilia function and its disruption in human genetic disease”

Primary cilia are basically signaling hubs, harboring amongst others the noncanonical WNT, Hedgehog,and PDGF signaling systems, and their disruption leads to striking developmental defects. Some ciliopathy-associated proteins have recently been revealed to be physically or functionally associated in several distinct groupings, with limited connections to other crucial biological processes. Early proteomics studies have also suggested a discrete repertoire of about 1000 proteins within the organelle (i.e. <5% of the proteome) that are still in need of organisation into pathways and networks. Small, relatively isolated systems are often targeted by systems biology approaches under the assumpt…

research product

TCTN3 Mutations Cause Mohr-Majewski Syndrome

Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in un…

research product

Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes

Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in theOFD1gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and …

research product