0000000000286752

AUTHOR

Paul S. Hamilton

Intensity interferometry for ultralight bosonic dark matter detection

Ultralight bosonic dark matter (UBDM) can be described by a classical wave-like field oscillating near the Compton frequency of the bosons. If a measurement scheme for the direct detection of UBDM interactions is sensitive to a signature quadratic in the field, then there is a near-zero-frequency (dc) component of the signal. Thus, a detector with a given finite bandwidth can be used to search for bosons with Compton frequencies many orders of magnitude larger than its bandwidth. This opens the possibility of a detection scheme analogous to Hanbury Brown and Twiss intensity interferometry. Assuming that the UBDM is virialized in the galactic gravitational potential, the random velocities pr…

research product

Search for topological defect dark matter with a global network of optical magnetometers

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

research product