0000000000286999

AUTHOR

P. Saggese

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

research product

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

research product

Calibration strategy of the JUNO experiment

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

research product

Charge reconstruction in large-area photomultipliers

Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction …

research product

GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment

Gravimetric methods are expected to play a decisive role in geophysical modeling of the regional crustal structure applied to geoneutrino studies. GIGJ (GOCE Inversion for Geoneutrinos at JUNO) is a 3D numerical model constituted by ~46 x 10$^{3}$ voxels of 50 x 50 x 0.1 km, built by inverting gravimetric data over the 6{\deg} x 4{\deg} area centered at the Jiangmen Underground Neutrino Observatory (JUNO) experiment, currently under construction in the Guangdong Province (China). The a-priori modeling is based on the adoption of deep seismic sounding profiles, receiver functions, teleseismic P-wave velocity models and Moho depth maps, according to their own accuracy and spatial resolution. …

research product

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability

Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…

research product