0000000000287375

AUTHOR

Christian Hofmann

Microreactor processing for the aqueous Kolbe-Schmitt synthesis of hydroquinone and phloroglucinol

Hydroquinone and phloroglucinol were used as substrates for the aqueous Kolbe-Schmitt synthesis, using a novel processing methodology, termed high-p,T processing, recently demonstrated for the carboxylation of resorcinol. By the high-p,T approach, the temperature limitations of classical batch synthesis, e.g., set by reflux conditions (solvent boiling point), can be overcome by simple technical expenditure, e.g., the use of a few microstructured components, a capillary, and a needle valve at very low internal holdup. In this way, favorable speed-up of chemical reaction is achieved at temperatures normally outside the useful range for organic synthesis. While the hydroquinone synthesis gave …

research product

Heat Pipe-Cooled Microstructured Reactor Concept for Highly Exothermal Ionic Liquid Syntheses

Heat pipes used for cooling of microstructured reactors are a new approach for sustainable processing also in the lab-scale within a temperature range from ambient to more than 180 °C. The main advantage of heat pipe cooling is the dynamic behavior, i.e., the cooling rate depends on the heat released. Heat pipes can also suppress thermal runaways due to their extremely short response times on momentary temperature rises. As an example, the highly exothermal synthesis of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate from the respective reactants 1-ethyl-imidazole and methyltrifluoromethanesulfonate was investigated. By transferring the protocol to continuous-flow conditions in the mi…

research product