0000000000287397

AUTHOR

Axel Gödecke

showing 5 related works from this author

A non-canonical chemical feedback self-limits nitric oxide-cyclic GMP signaling in health and disease

2018

Endothelial nitric oxide (NO) stimulates the heme protein, soluble guanylyl cyclase (sGC) to form vasoprotective cyclic GMP (cGMP). In different disease states such as pulmonary hypertension, NO-cGMP signaling is pharmacologically augmented, yet the pathomechanisms leading to its dysregulation are incompletely understood. Here we show in pulmonary artery endothelial cells that endogenous NO or NO donor compounds acutely stimulate sGC activity, but chronically down-regulate both sGC protein and cGMP formation. Surprisingly, this endogenous feedback mechanism was independent of canonical cGMP signaling via cGMP-dependent protein kinase. It did not involve thiol-dependent modulation, a process…

inorganic chemicalsActivator (genetics)ChemistryEndogenyPharmacologymedicine.diseasePulmonary hypertensionVasoprotectiveNitric oxidechemistry.chemical_compoundcardiovascular systemmedicineheterocyclic compoundsProtein kinase ASoluble guanylyl cyclaseHeme
researchProduct

Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets

2021

Abstract The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT i…

PalmitatesOxidative phosphorylationMitochondrion1307 Cell BiologyMiceAdipose Tissue BrownLipid dropletBrown adipose tissueRespiration1312 Molecular BiologymedicineAnimalsHumansPPAR alpha11434 Center for Clinical StudiesMuscle SkeletalMolecular BiologyUncoupling Protein 1Mice KnockoutMyoglobinChemistryProteinsThermogenesisLipid metabolismLipid DropletsCell BiologyMetabolism10081 Institute of Veterinary PhysiologyPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMitochondriaCell biologyOxygenDisease Models AnimalAdipocytes Brownmedicine.anatomical_structure10076 Center for Integrative Human Physiology570 Life sciences; biologyApoptosis Regulatory ProteinsEnergy MetabolismThermogenesisBiochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
researchProduct

Effects of nitric oxide donors on cardiac contractility in wild-type and myoglobin-deficient mice

2002

1. The effects of the nitric oxide (NO) donors S-nitroso-N-acetylpenicillamine (SNAP), sodium(Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate), and (Z)-1-[N-(2-Aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) on force of contraction (F(c)) were studied in atrial and ventricular muscle strips obtained from wild-type (WT) and myoglobin-deficient (myo(-/-)) mice. 2. SNAP slightly reduced F(c) in preparations from WT mice at concentrations above 100 microM; this effect was more pronounced in myo(-/-) mice. 3. DEA-NONOate reduced F(c) in preparations from myo(-/-) mice to a larger extent than those from WT mice. 4. DETA-NONOate reduced F(c) in preparations…

Pharmacologymedicine.medical_specialtyWild typeSnapNitric oxideContractilitychemistry.chemical_compoundEndocrinologychemistryMyoglobinInternal medicinemedicineSoluble guanylyl cyclaseReceptorIntracellularBritish Journal of Pharmacology
researchProduct

Biopterin metabolism and eNOS expression during hypoxic pulmonary hypertension in mice.

2013

International audience; Tetrahydrobiopterin (BH$_4$), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH$_4$ pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH$_4$) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH$_4$ levels and eNOS expression, without modifying dihydrobiopterin (BH$_2$, t…

medicine.medical_specialtySepiapterinNitric Oxide Synthase Type III[SDV]Life Sciences [q-bio]Hypertension PulmonaryBiopterinlcsh:Medicine[SDV.BC]Life Sciences [q-bio]/Cellular Biology[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]030204 cardiovascular system & hematology03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineEnosRight ventricular hypertrophyDihydrobiopterinInternal medicinemedicine[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]AnimalsHypoxialcsh:Science[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biology0303 health sciencesMultidisciplinarybiologylcsh:RHypoxia (medical)biology.organism_classificationmedicine.diseasePulmonary hypertensionBiopterin[SDV] Life Sciences [q-bio]Disease Models AnimalTetrahydrofolate DehydrogenaseEndocrinologychemistryVentricular pressurelcsh:Qmedicine.symptomResearch ArticlePLoS ONE
researchProduct

Dexamethasone lacks effect on blood pressure in mice with a disrupted endothelial NO synthase gene.

2003

Cushing's syndrome and systemic administration of glucocorticoids are associated with hypertension, but the underlying molecular mechanism is only partially understood. We have shown previously that dexamethasone downregulates the expression of the endothelial NO synthase (eNOS) gene in human endothelial cells and in the rat and that this may contribute to the blood pressure-raising effect of the steroid [Proc. Natl. Acad. Sci. USA 96 (1999) 13357]. In the current communication, we demonstrated that dexamethasone increased mean arterial blood pressure in wild-type C-57 Bl6 mice (eNOS+/+ mice), but had no effect on blood pressure in mice with a disrupted eNOS gene (eNOS-/- mice) derived from…

Cancer Researchmedicine.medical_specialtyEndotheliumNitric Oxide Synthase Type IIIPhysiologyClinical BiochemistryNitric Oxide Synthase Type IIBlood PressureBiologyKidneyNitric OxideBiochemistryDexamethasoneMiceDownregulation and upregulationEnosInternal medicinemedicineAnimalsEnzyme InhibitorsDexamethasoneMice KnockoutKidneyMyocardiumNitric Oxide Synthase Type IIIbiology.organism_classificationmedicine.anatomical_structureBlood pressureEndocrinologyLiverPharmacogeneticsHypertensionSystemic administrationNitric Oxide Synthasemedicine.drugNitric oxide : biology and chemistry
researchProduct