0000000000287464

AUTHOR

Steffen Riebe

Structure and luminescence properties of supramolecular polymers of amphiphilic aromatic thioether–peptide conjugates in water

We present the preparation of luminophore–peptide conjugates that self-assemble into supramolecular polymers in neutral buffer. To this end, we have prepared a small library of six conjugates with varying substitution patterns of the aromatic thioethers, as well as varying amino acid sequences. The latter have allowed us to tune the thermodynamic driving force for self-assembly and probe their photoluminescent properties either in the monomeric or polymeric state, while fully avoiding selective solvent techniques or organic solvent mixtures. All of the supramolecular structures were characterised with transmission electron microscopy, circular dichroism measurements, as well as steady-state…

research product

Alkylated Aromatic Thioethers with Aggregation‐Induced Emission Properties—Assembly and Photophysics

In this contribution, we present the synthesis and self-assembly of alkylated thioethers with interesting photophysical properties. To this end, the emission, absorption and excitation spectra in organic solvents and as aggregates in water were measured as well as the corresponding photoluminescence quantum yields and lifetimes. The aggregates in aqueous media were visualized and measured using transmission electron microscopy. Besides that, crystal structures of selected compounds allowed a detailed discussion of the structure–property relationship. Furthermore, the mesomorphic behavior was investigated using polarized optical microscopy (POM) as well as differential scanning calorimetry (…

research product

Structure-property relationships in aromatic thioethers featuring aggregation-induced emission : Solid-state structures and theoretical analysis

We describe in this paper a structure–property relationship study of aromatic thioethers with aggregation-induced emission (AIE) properties. We combine a structural analysis based on geometrical consideration with an in-depth analysis of the crystalline packing supported by quantum mechanical calculations. Our results allow us to correlate the enhanced fluorescence quantum yields with the significant increase of C–H⋯π and the decrease of π⋯π interactions in the solid state – a result which supports the well-accepted AIE mechanism quantitatively.

research product

CCDC 1894901: Experimental Crystal Structure Determination

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

research product

CCDC 1893331: Experimental Crystal Structure Determination

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

research product

CCDC 1895359: Experimental Crystal Structure Determination

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

research product

CCDC 1895424: Experimental Crystal Structure Determination

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

research product

CCDC 1877494: Experimental Crystal Structure Determination

Related Article: Steffen Riebe, Marco Saccone, Jacqueline Stelzer, Andrea Sowa, Christoph Wölper, Kateryna Soloviova, Cristian A. Strassert, Michael Giese, Jens Voskuhl|2019|Chem.Asian J.|14|814|doi:10.1002/asia.201801564

research product

CCDC 1871602: Experimental Crystal Structure Determination

Related Article: Steffen Riebe, Marco Saccone, Jacqueline Stelzer, Andrea Sowa, Christoph Wölper, Kateryna Soloviova, Cristian A. Strassert, Michael Giese, Jens Voskuhl|2018|CSD Communication|||

research product

CCDC 1871491: Experimental Crystal Structure Determination

Related Article: Steffen Riebe, Marco Saccone, Jacqueline Stelzer, Andrea Sowa, Christoph Wölper, Kateryna Soloviova, Cristian A. Strassert, Michael Giese, Jens Voskuhl|2019|Chem.Asian J.|14|814|doi:10.1002/asia.201801564

research product

CCDC 1895360: Experimental Crystal Structure Determination

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

research product